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PREFACE

THE present second English edition is not merely a reprinting of the
first edition, which has been out of print for several years, but
rather a translation of the third German edition, revised by the
author in 1951; this last differs in many ways from the second
German edition, on which the original English translation was
based.

The change consists essentially in the author’s omitting some ofy
the discussions of the early controversies regarding his theory, and
making instead various additions: The concept of randominess,
which plays a central role in the author’s theory, is recondidered—
in particular, with respect to the problem of mathemati¢al consis-
tency—and carcfully reformulated. The question of s(ibstituting for
it some ‘limited randomness’ is taken up, and the @uthor concludes
that, as far as the basic axioms are concerned, posuch restriction is
advisable. Systematic consideration is given {td recent work con-
cerned with the basic definitions of probabilisy theory: in the ideas
of E. Tornier and of J. L. Doob, the author sces a rematrkable
development of his theory of freq‘ﬁ%’tf:fti@?‘iﬁ”&@l@é’ﬁv@é%-%e analysis
of the two Laws of Large Numbers has often been considered an
outstanding section of the book ~iy*the 1951 edition, on the basis of
new mathematical results, tHe\discussion of the Sccond Law is
deepened and enlarged, \yith\thc aim of clarifying this highly con-
froversial subject. Comfénts are added on the testing of hypothescs,
(as based on the infefence theory originated by T. Bayes), on R. A.
Fisher’s ‘likelihogd’?;and on a few related subjects. These and all
other additions &re selected as well as discussed in relation to the
basic ideas adga}iced in the book.

The deylations in content of the present English version from the
third Geran edition are insignificant. Some passages which seemed
of mdre local (Austrian) interest have been omitted. In a few
igStances the text has been changed (with explanation in the Notes
wheh necessary). The Notes, historical, bibliographical, ctc., have
been somewhat modified. References have been brought up to
date; indications of German translations have been replaced by
corresponding English works; several notes are new, A subject index
has been added.

The present text is based on the excellent translation (1939) of
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PREFACE

Messrs. ). Neyman, D. Scholl, and E. Rabinowitsch: it lus been
supplemented by all the new material in the 1951 edition, and
amended in the light of notes made by the author in anticipation of
a new English edition, In addition, the entire text was given a careful
editorial revision. The sixth chapter, on ‘Statistics in Physics” was
essentially retranslated.

In these various aspects, and in particular with regard o Lthe new
translations, T enjoyed the valuable assistance of Mrs. R. Buka.
My sincere thanks go to Professor J. Neyman for his understanding
encouragement, to Professor E. Tornier for significant advice regard->
ing a few difficult passages, to Dr. A. O’Neill who preparcg the
index, to Mr. F, J. Zucker, who kindly read the 1ranslati0u'é?}he
sixth chapter, and to Mr. 1. D. Elder, who was good ;:1"10}15:11 to
check the text with respect to uniformity and general*ebfisistency
of style, I am very grateful to the Department of/Mathematics,
pa.rt_icu]a?ly to Professor G. Birkhoff, and testhe Division of
Engincering and Appiied Physics of Harvard 'Uni»-crsi[y, who
together with the Office of Naval Research sponsored this work.
Fivally, I thank the publishers, Allen & ' Jnwin, Ltd., London,
and the Macmillan Company, New Yoyk}?&or the cooperalion they
gave freely whenever needed, and the Springer-Verlag, Vienna, for

granting pchEQ%Q&}Qu@}@g%ﬁﬁiﬁédition.

Cambridge, Mass., U.5. 4, HILDA GEIRINGER
June 1956, Ny
O
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PREFACE TO THE THIRD GERMAN EDITION

THIRTY years have gone by since the first publication of this book.
The present sixth edition follows two in German, and one each in
Russian, English and Spanish. I therefore feel that it may be well to
review briefly at this point the development of the ideas with which
we deal here.

The subject of this book is the quantitative concept of probability
in probability theory, a discipline which originated in the scventeenth
century and which was first set down in a precisc manner by Laplace,)
shortly after 1800, As in other branches of science, such as geongefry,
mechanies, and parts of theoretical physics, so in the théory of
probability, the episiemological position remained in the-dark for a
long time. Near the end of the nineteenth century, Ernkt Mach and
Henri Poincaré made decisive contributions towards{he clarification
of the meaning and purpose of scientific concepts.\However, Mach
was not interested in probability, and Poincaré accepted quite un-
critically the point of view of Laplace, \vf?o had a laissez-faire
attitude: Beginning with a few not very me@hifigful words concerning
equally possible, favourable andwundalipuratiraegsesg e deduced
some simple rules which he then used{appatently) to an extent quite
out of proportion to his modest statting point. Neither Laplace nor
any of his followers, including Poincaré, ever reveals how, starting
with @ priori premises concetiilg equally possible cases, the sudden
trapsition to the descriptidn)of real statistical events is to be made.

The essentially ncw gﬁa which appeared about 1919 (though it
was to a certain cxtebt anticipated by A. A. Cournot in France,
John Venn in England, and Georg Helm in Germany) was to con-
sider the thegryhef probability as a science of the same order as
geometry ontheoretical mechanics. Tn other words, to maintain that
just as il &u"bject matter of geometry is the study of space pheno-
mena, 80, probability theory deals with mass phenomena and repeti-
tive gvenits. By means of the methods of abstraction and idealization
(&hich are only in part free activities of the mind), a system of basic
coficepts is created upon which a logical structure can then be
erected. Owing to the original relation betwcen the basic concepts
and the observed primary phenomena, this theoretical structure
permits us to draw conclusions concerning the world of reality. in
order to allow a rationally justified application of this probability

Vi



PREFACE TO THE THIRD GERMAN EDITION

theory to reality, a quantitative probability concept must be defined
in terms of potentiaily unlimited sequences of observations or experi-
ments. The relative frequency of the repetition is the ‘measure’ of
probability, just as the length of a column of mercury is the ‘measure’
of temperature.

These are the fundamental ideas underlying the new concept;
when they were first formulated they appeared to break completely
with the views generally held; today, howoever, they have been
accepted, in the main, by most authors in the field.

This development was somewhat masked by the fact that thesé™\
same thirty years, starting about 1918, witnessed progress omAan
unprecedented scale on the formal side of the mathenarics ofprob-
ability. My first modest attempt to arrive at certain general fopmula-
tions (‘Fundamentalsitze der Wahrscheinlichkeitsrcchnupg’., Mathe-
matische Zeitschrift, 1918) is today, in most respects, oritduted. With
the aid of the modern theory of sets and the theory efecal functions,
it has been possibie to perfect the formal mathematical foundation
in a manner that is aestheticaily satisfying and mgt without practical
value. This is true especially for some fai@(\recent results which
have opened up the important field af@o called stochastic pro-
cesses. However, a discussion of these tepics does not belong in
this book. Suiffice it to say that theldetailed development of the
tautological sidesofl braiébIHiY SREEEE neither the need for, nor the
content of its epistemological fourdation. The mathematician who
works on special problems of ‘higher geometry need not concern
himself with the axiomaqip'\a-spect of Euclid's Elements; this, how-
ever, does not imply thaf Were is any part of geometry that is not
based on the Euclidiaf slements,

A certain reactioh—of a rather superficial nature—has set in
during the st Vears. It is brought out repeatedly in this book
that the worg ‘probability’ has a meaning in everyday language that
is du’ferent: {rom its quantitative meaning in probability calculus.
Some authlers with metaphysical leanings have sought to bujld a
separaggt eory on this other meaning of the word. Such attempis,
namgiy,’ the study of questions of reliability or plausibility of judge-
ments, of P y o Juee

Zments, of propositions and systems of propositions, are justified as
lofg as they remain withi i i



PREFACE TO THE THIRD GERMAN EDITION

induction or “inductive logic’. According to the basic viewpoint of
this book, the theory of probability in its application to reality is
itself an inductive science; its results and formulas cannot serve to
found the inductive process as such, much less to provide numerical
values for the plausibility of any other branch of inductive science,
say the general theory of relativity.

During the last few decades, the Anglo-Saxon countries have seen
a good deal of progress in the practical application of probability
theory to statistical problems in biology and in industry. This
development started with the misunderstanding of one of the classical
formulas of probability calculus (Bayes’s rule); there followed 2
period that was characterized by the erroncous practice of drawi:}g~\~
statistical conclusions from short sequences of observations: the.se-"
called “small sample theory’. At present, it seems that these mistakes
have cssentially been overcome and that the way has beer cleared
for an appropriate development of those formulas thag‘permit an
extensive application of statistical methods, The prése:\nt editien
contains a few remarks on this subject. )

Otherwise, this new edition differs from the preegding ones chicfly
in the omission of some polemic discussionsiand criticisms that
secmed no longer necessary, while varighs JAdditions are made,
mainly in Lectures 3, 4, and 5. R Oud
wwxf.slﬁl”aulibral‘y,orﬁ,irl

N

Cambridge, Mass,, U.S.A. . (. M1SES
Nevember 1950 ) )
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FIRST LECTURE

The Definition of Probability

¢ )

To illustrate the apparent contrast between statistics and truth which -
might be inferred from the title of our book may I quote a_rémark
1 once overheard: ‘There are three kinds of lies: white lies, which are
justifiable; common lies—these have no justification; and statistics.”
Our meaning is similar when we say: ‘Anything cagd\be’ proved by
figures’; or, modifying a well-known quotation from*Goethe, with
numbers ‘all men may contend their charming systems to defend.’

At the basis of all snch remarks lies the convietion that conclusions
drawn from statistical considerations are gi\Best uncertain and at
worst misleading. I do not deny that a grgat-deal of meaningless and
unfounded talk is presented to the pubfermlikr wameedhstatistics.
But my purpose is to show that, stagfiitg from statistical observations
and applying to them a clear and Precise concept of probability it is
possible to arrive at conclusiong which are just as reliable and ‘truth-
full’ and quilc as practicallf Bseful as those obtained in any other
exact science. In order_to\ichieve this purpose, I must ask you to
follow me along a road which is often laborious and by paths which
al first sight may appcar unnecessarily winding.

O
MQ::J\\‘ijMENT OF POPULAR TERMINOLOGY

‘All our'jﬁs’h\ﬂosophy js & correction of the common usage of words,’
says Lichtenberg? Many of the quarrels and mistakes occurring in
thelcoitse of scientific advance could be avoided if this remark were
always remembered. Qur first step, therefore, will be to inquire more
closely into the meaning of the word ‘probability’. This will be fol-
lowed by arguments which will gradually lead us to an adequate
scientific definition of the comcept of probability. I have already
hinted that the key to the relation between statistics and truth may
be found in a reasonable definition of probability. I hope that this

1
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PROBABILITY, STATISTICS AND TRUTH

point will become quite clear in the course of the subsequent
discussion.

The word ‘probable’ is frequently used in everyday speech. We
say, for instance, ‘It will probably rain tomorrow’, or, ‘It is probably
snowing right now in Teeland’, or “The temperaturc was probably
lower a year ago today than it is today”. Again, we speak of something
being more or less probable or more or less improbable when, for
example, we are discussing the guilt of an accused person or the
deposition of a witness. In a more definite way, wc may say that
there is a greater probability of winning the first prize in a cgriain
sweepstake than of gaining the smallest in another, We lraya no
difficuity in explaining what we mean by these statements g§ylong as
the inquirer is satisfied by a ‘descriptive’ answer. We cam easily find
a number of expressicens which will serve. We may speak of a ‘guess’,
of ‘approximate’ or ‘incomplete’ knowledge, or ‘charce’, or we may
say that we have more or less adequate reasapsvor believing that
this or that is the case, and so forth, N

EXPLANATION QFjw‘\ogbs

Considerable difficulties arise, however, when we are asked to give
an exact cmmm@augb&ygnd@rﬁ; a definition of what we mean by
‘probability’. Perhaps someoneymay suggest looking up the word in 2
dictionary. Volume XTI of the German Dictionary by Jakob and
Wilhelm Grimm?® gives 1§ détailed information: The Latin term “pro-
balbﬂls’, we are told, sag at one time translated by ‘like truth’, or, by
‘with an appearar}c}ﬂ truth’ (‘mif einem Schein der Wahrheit’). Only
since the middle of the seventeenth century has it been rendered by
‘wahrscheinlicht” (lit. truth-resembling). We also find & number of
quotations,illustrating the use of the word, most of them taken from
philosophieal works. I shall only refer to a few examples: ‘The prob-
ablfe\. Something which lics midway between truth and error
(Lhomasius, 1688); ‘An assertion, of which the contrary is not cont-

¢Pletelyself-contradictory orimpossible, is called probable’ (Reimarus).

Kant says: “That which, if it were held as truth, would be more than
half certam_, 15 called probable. Perhaps, after these examples, some-
one may wish to know what modern philosophy has contributed to
this s.ubject. T quote literally from Robert Eisler's Dictionary of Ph ilo-
sophic Concepts (1910): ‘Probability, in the subjective scnse, 18 2
degree of certainty which is based on strong or even overwhelming
reasons for making an assertion. . . . In the objective sense, the
probable is that which is supported by a number of objective argu-
\ .



THE DEFINITION OF PROBABILITY

ments. . . . There arc differing degrees of probability and these
depend upon the kind and number of reasons or facts upon which the
assertion or conclusion of probability is based.™

To consider now a familiar, modern source, Webslet’s New
International Dictionary gives the following definition of probability:
‘Quality or state of being probuble; reasonable ground for presum-
ing; likelihood; move narrowly, a conciusion that is not proof but
follows logically from such evidence as is available; as, reports
devoid of all probability, to establish probability of guilt.™t (For
Webster's definition of rathematical probability, see note 1,
Leet. 3).

It is vseless to quarrel with these philosophic explanations. They)
are merely substitutions; one word Is replaced by others and-fpe-
quently by a great many. If these new words are more familidr’ to
the reader than the original one, then he may find some explanation
in this procedure while others will find none¢ in this way. Some, for
instance, may understand the meaning of ‘more thaf_half certain’
better than the simple word ‘probable’. This can by be a matter
of personal preference, and explanations of ihis~kind cannot be
generally regarded as a correction of common,word usage.

SYNTHETIC lwwmiﬁﬂﬁforary,org,in

Let us now consider a way by which we may arrive at a better
definition of probability than that'siven in the dictionaries, which s
so obviously unsatisfactory faf\gur purpose.

In the course of the las;tzif‘ey\a\I centuriecs a method of forming and
defining concepts has béen developed by the exact sciences which
shows us the way cledrly and with certainty. To ignore or to reject
this method would &g to question all the achievements of modern
mathematics and, pHysics. As a preliminary example, let mc quote &
mogiern delinitidn of a concept which belongs to the science of
socmlogy;;’r i¥"is more nearly rclated fo the subject-matter of our
general editeation and will thus form a transition to those concepts
Wlt%l whieh we shall be concerned later. Werner Sombart.? in his
b?ORgProletarfan Socialism, attempts to {ind a useful definition of
his $tibject and in so doing he considers a number of current inter-
pretations, He conciudes: *The only remaining possibility is to
consider socialism as an idea and to form a reasonable concept of it,
Le., to delimit a subject matter which possesses & number of charac-
teristics considered to be particularly important to it and which form
a meaningful unity; the ““correctness” of this concept can only be

z 3



PROBABILITY, STATISTICS AND TRUTH

tudged from its fruitfulness, both as a creative idea in lifc and as a
useful instrument for advancing scientific investipation.” Thess
words actually contain almost ail that is characteristic of the scien-
tific method of developing new concepts. There are in particular two
points which I wish to emphasize: in the first place, the content of
a concept is not derived from the meaning popularly given to a
word, and it is therefore independent of current usage. Instead, the
concept is first established and its boundaries are purposcly circum-
seribed, and a word, as a suitable kind of label, is affixed Jater. 1
the second place, the value of a concept is not gauged by its corugs-
pondence with some usual group of notions, but only by its Gseful-
ness for further scientific development, and so, indire@ﬂ}", for
everyday affairs, Qe

We may say, with Kant,® that our aim is to give n6t an analytic
definition of probability but a synthetic one, We maleave open the

question of the general possibility of finding Mnnlytic definitions
at all.

'\\
TERM[NOLQG::\

1 should like to add a further remafk 'abo ut the first of the above-
mentioned properties of synthetie definitions. The person who
artives at ¥ k_%bﬂ 5‘%{%\%&?111&}1 be inclined to invent a mew
name for it: he will ook for-aWord which has not already been used
1n some other sense, pethéps one closely related to that in which he
hlmself_ wishes to usggt,\Since it is obviously difficult to find new
words in one’s owa{\llanguage, foreign or adopted words are fre-
quently introduged futo the scientific vocabulary. Although the
purists in the matter of language are not alto gether to be blamed, it
would appeat that they 80 100 far when they ignore this reason for
the introddetion of foreign words into the language of scicnce, and

attempt{{o retranslate them into ordinary language. For cxample, it

1s unfortunate that most languages have no specific word for prob-

abihiy in its scientific sense but only popular terms like Wahrschein-
~ ‘:gbhkeu, probability, probabilité. However, no term has been
/invented and, naturally, jt is quite possible for a scientific concept o
exist without having a special name. This i the case with many of the
Tost mportant concepts of mechanics which are hidden behind such
ordinary words as force, mass, work, etc, All the samc,. T do feel that

?vlsgl);llaunden,tan?i e;f T some professionals in the field of mechanics,
crsland these concepts more cle i Latin
names rather than names t 3 clearly if they had

) aken from everyday usage. Scientists
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themselves are only human, and they use the common language for
the greater part of their lives in the same way as other humans. They
arc subject to the same kinds of confusion of speech and often give
way to them only too freely.

THE CONCEPT OF WORK IN MECHANICS

Before T deal with the development of the scientific concept of
probability, T should like to recall the similar state of affairs which
prevailed during the formation of most other concepts in the exact
sciences, As an example of a concept which is familiar today £,
educated persons, I shall choose that of work as it is used in tleos
retical mechanics. We all use the word ‘work’ with a vasiety’ of
different meanings, Even when we do not consider idiomati¢ phrases
like “to work on someone’s feelings®, there are many waysin which
the word is used which have little to do with the coneepbof work as
itis understood in science. The simplest scientific défitntions of work
are: *Work is the product of force and distance’,to‘, more exactly,
‘the scalar product of the vectors of force and'@‘splacement’, or ‘the
line-integral of force’.? All these definitions &re equally suitable for
many everyday matters and the nonmathematician need only keep in
mind the first of them. 1T we consider Some I6S, spch as the
lifting of a weight, the turning of a gramk, or the pushing of a pedal,
in each case the work performed becomes greater with an increase in
the weight of the load movedaas well as with an increase in the
distance through which it is fioved.

Yet this scientific dcﬁ{'bri of work is hardly applicable to even
the simplest of activities\Which are only partly of a mechanical
nature. We may think{of working a typewriter or playing a musical
instrument, In thaJditer case, it is hardly possible to say that the
correct measureolthe work performed by the musician is the product
of the force appliéd by the fingers of the musician and their displace-
ment. Aga Ln}w"'hen we speak of the work involved in writing a book,
painting @\picture, or attending a patient, we are even further from
the ’s;cien‘tiﬁc meaning of the word *work’. Tt is hard work from the
hufnan“point of view to hold a heavy weight steadily with out-
stretéhed arms, but in this case the product of the force and the
displacement is zero, In sports and games, the work calculated
according te the rules of mechanics can hardly be regarded as a
correct measure of the physical effort involved. No reasonable
person objects to these discrepancies because we have become too
accustomed to the fact that the same word may have a different

5

Q



PROBABILITY, STATISTICS AND TRUTH

meaning according as it is used scientifically or colloquially. When
we use the word ‘work’ in its scientific meaning, we automatically
climinate all other associations which it may bring to our minds on
other occasions, since these do not appertain to it in mechanics.

AN HISTORICAL INTERLUDE

It was not immediately realized that the meg ning of scientific con-
cepts is independent of ‘the literal meanings of the words used for
them; this recognition only evolved over a long period in the develdps
ment of scientific thought. This is illustrated by the contgovérsy
between the followers of Descartes and of Leibnitz on the gheStion
of vis viva.® Is the ‘effect of foree’ equal to the product of phe mass
and the velocity or to the product of the mass and halflic square of
the velocity? We know now that this question has ng fogical answer
and relies upon a definition which is ultimately arbitrary; what is to
be called ‘vis viva® and what ‘momentunt’ is completely sccondary. In
the words of Robert Mever we may say: ‘1t decs nE)t matter what

others mean by the word “work”, what w\c;i}tend to convey by it is
the thing that really matters’, )

We have all experienced, in school, the dilficulties which arise from

the confusion between the colloquid] and the scientific meanings of

words, We had &Bré‘fﬁi’ﬁliawﬁf‘@mme slowest motion has velocity,
that a retatdéed motion has ag‘aceeleration but wi th a negative sign,
and that ‘rest’ is a particular case of motion, This mastering of
smennﬁc language is esserfiia] it mental development, for, without it,
there is no approach,tg’g’tl}mdem natural science.

We have given Afew examples of the use of common words as
selentific terms. Phere is a growing tendency towards a morc precise
use of certain Mords of everyday language., Most educatcd persons

I the specific meanings given to words in
A pected to distinguish between
hreath. rang.e, rectangle, and Square, and to know how these
trﬁii ms are defined, Inl the near future, 5 much deeper under-
:Si.l:. g of questions of thig kind will be taken for granted.

.\ ¥
Q 3

THE PUREOSE OF RATIONAL CON

CEPTS
When a name is ch

osen for a scientific coneept, it is obvious that
B uistic convenience and ood taste, Neverthcless
1t 1s the content of 5 con 404 good taste. Never .
. cept, and not 115 ; : g ort-
ance. The definition P 1ame, which is of imp

e useful purpose. We consider a
Puépose to be useful if it ig in agfeementpwig} what we gencrally
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vegard as the purpese of science. This is to bring order into the
multiplicity of observed phenomena, to predict the course of their
development, and to point out ways by which we may brmg‘ about
particular phenomena in which we are interested. The soientific
notion of ‘work’, and the whole conceptual system of classical
physics, of which this notion is a part, have proved their utility in all
these directions. The Law of Conservation ol Energy has provided us
with the means of bringing order into a very wide region of physical '
phenomena. This law enables us to predict the course of many,
natural events, while, at the same time, the engineer and the electsi-
cian derive from it the data necessary to caleulate the dimensios e
their machines. Nobody can deny the theoretical and préactical
suceess of scientific mechanies, which has been founded upaii con-
cepts of this kind, One criticism occasionally Jevelled /against the
practical utility of this rationalization of scientific coneepts will be
examined bricfly. ¢

People have said, ‘It is easy to formulate a self-bonsistent theory
based on exactly defined artificial concepts, Bt in the practical
applications of the theory we always haventoydeal with vague pro-
cesses which can only be adequatcly deséribed in terms of corres-
pondingly vague concepts which havegvolved in a natural way’,
There is some truth in this objectiagy fyritmpekey svidmt a great
deficiency which is to be found in afy theoretical treatment of reality,
T'he cvents which we obscrve, antin which we take part, are always
very complicated; even the mst elaborate and detailed theory cannot
tzke into account all the Aastors involved. Tt is an art requiring a
scientifically trained windmerely to identify the one feature among
a multitude present in'anatural process which is to be considered a3
the only ¢ssential Qe’trom the theoretical point of view. Nevertheless,
it would be a 1nt§1ke, or at least wounld lead us away from the whole
of the scientific Gevelopment of the last few centuries, if we were to
fo@]_ow the 'rgsqn school of modern philosophy. The adherents of
this schoalrepudiate the use of sharply defined concepts, hoping in
this wayito cope more adequately with the complexity of the real
woﬁd}. Nothing would be gained by a return 1o those vague notions,
which are sometimes praiscd as intuitive but which are really nothing
but an unprecise and indefinite use of words. ’ )

THE INADEQUACY OF THRORIES

Imagine that | draw a ‘straight line’ ona b

lackboard with a pioce
of chalk. What a complicated thing is this b the

line’ compared with the
7
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‘straight line” defined by geometry! In the first place. it is nol a line
at all, since it has definite breadth; even more than that. it is u (hree-
dimensional body made of chalk, an agerepale of muny snwll bodics,
the chalk particles. A person who was unaccustomed 1o seeing the
teacher at school draw ‘straight lines® of this kind would be almost
unable to understand what this bedy of chalk has in commoa with
the ‘straight line’ defined in the textbooks ws *the shoitest distance
between (wo points’, All the same, we do know that the cxact ideal-
ized conceptions of pure geometry are essential tools for dealigs,
with the real things around us, We need these abstract concepls jhst
because they are simple cnough that our minds can handle themayith
comparative ease. O

Attempts have been made to construct geometrivs A, which no
‘infinitely narrow’ lines exist but only those of delifig width, The
results were meagre because this method of treagminl’ls much more
difficult than the usual one. Moreover, u strip of dofhite width is only
another abstraction no better than a stratgh fine. wnd is really more
complicated, since it involves somclhing\’ {ike two strai ght lines
limiting it, one on either side. D)

T am prepared to concede without fQirther argument that all the
theg)retical constructions, j“du‘iingf.@corncuy, which are used in the
vatious brapches af phjisesiyoplyimperfect instruments (o enable

the world of empirical fact tabe reconstructed in our minds. The

theory of probability, which We include among the exact sciences,
18 Just one such theoreti

0<{1 system. But I do not believe that there is
any other way to achievgiprogress in science than the old method: 10
begin with the sim}l}st, Le, the exacl theoretical scheme and to
ext.e'nd z}nd imprpx‘:e it gradually. In dealing with the theory of prob-
ability, ie., with probability caleulus, T do not liope to achieve more
than the reSults alveady attained by geometry, mechanics, and
certain otiier branches of physics. That is to say, I aim at the con-
structl_@of a rational theory, based on the simplest possible exact
CORECRIS, ome which, although admittedly inadequate 1o represent

.th\ejc"’mplex_ity of the real processes, is ahle to reproduce satisfactorily
4 "~>some of their essentia) properties.

.

LIMITATION OF sCcops
criAtfiter alg these prefiminary discussions, we now come 1o the des-
rerﬁa:-)l:l lihour concept of probability. it follows from our previous

$ that our first task muygy be one of elimination. From the

complex of ideas which are colloquially covered by the word
8
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‘probability’, we must remove all those that remain outside the theory
we are endeavouring to formulate. I shall therefore begin with a pre-
liminary dclimitation of our concept of probability; this will be
developed into a more precise definition during the course of our
discussion. '

Our probabiiity theory has nothing to do with questions such as:
‘Is there a probability of Germany being at some time in the future
involved in a war with Liberia? Again, the question of the ‘prob-
sbility” of the correct interpretation of a certain passage from they
Annals of Tacilus has nothing in common with our theory. Tt need
hardly be pointed oul that we are likewise unconcerned with \the
‘intrinsic probability” of a work of art. The relation of our thédry o
Goethe’s superb dialogue on Truth and Probability in Fjug Art® is
thus only one of similatity in the sounds of words and ephsequently
is irrelevant. We shall not deal with the problem of‘the historical
accuracy of Biblical narratives, although it is intergsting to note that
a Russian mathematician, A. Markofl,!" inspired by the ideas of the
eighteenth-century Enlightcniment, wished to seéthe theory of prob-
ability applied to this subject. Similarly, weshall not concern our-
selves with any of those problems of the(mdral sciences which were
so ingeniously treated by Laplace! inlhis Essai Philosophigue. The
unlimited extension of the validity.ghvtaersrackiseignees was a char-
acteristic feature of the exaggeraitd rationalism of the eightoenth
century, We do not intend Lo commit the same misiake,

Problems such as the pgobable reliability of witnesses and the
correctness of judicial verdicts lie more or less on the boundary of
the region which we afe\going to include in our treatment. Thesc
problems have beef\the subject of many scientific discussions;
Poisson'? chose {hg as the title of his famous book.

To reach the.gssence of the problems of probability which do form
the subject-m{}tter of this book, we must consider, for example, the
probabilil%of winning in a carcfully defined game of chance. Is it
sensible}tto et that a ‘double 6" will appear at least once if two dice
are tivown twenty-four times? Ts this vesult ‘probable’? More
Xdetly, how great is its probability ? Such are the questions we feel
abi¢ to answer. Many problems of considerable importance in every-
day life belong to the same class and can be treated in the same way;
examples of these are many problems connected with insurance, such
as those concerning the probability of illness or death occurring
under carefully specified conditions, the premium which must be
';}sl(ed for insurance against a particular kind of risk, and so

orth.

9
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Besides the games of chance and certain problems relating to
social mass phenomena, there is a third ficld in which our concept
has a useful application. This is in the treatment of certain mechan-
ical and physical phenomena. Typical examples may be scen in the
movement of molecules in a gas or in the random motion of colloidal
particles which can be observed with the ultramicrosco pe. (‘Colloid’
is the name given to a system of very fine particles freely suspended
in a medium, with the size of the particles so minuie that the whole
appears to the naked eye to be a homogeneous liquid.) Q)

N
X

"N\
What is the common feature in the last three cxam ple;s‘;i.{la what is
the essential distinction between the meaning of ‘probability’ in
these cases and its meaning in the earlier examplgg, which we have
excluded from our treatment? One common féafure can be recog-
nized easily, and we think it crucial, In gamss* of chance, in the
probiems of insurance, and in the molecudar/Processes we find events
repeating themselves again and again. Theysare mass phenomena ot
repetitive events, The throwing of a pa¥“of dice is an event which
can theoretically be repeated an uelimited number of times, for we
do not take mgq\,m‘tﬂ}m-wwﬁmﬁ’the box or the possibility that
the dice may break. If we aredealing with a typical problem of
Insurance. we can imagine a gréat army of individuals in suring them-
selves against the same rigk; ‘wnd the repeated occurrence of events of
a simi lal_' kind (e.g., dc;qth}} are registered in the records of insurance
compantes. In the 4Hird case, that of the molecules or colloidal
particl es, the imn}sqse number of particles partaking in cach process
1s a fundamentah feature of the whole conception.
. On‘the othehhand, this unlimited repetition, this ‘mass charactet’,
is typmall;yaﬁ_:scnt 1n the case of ali the exam ples previously excluded.
r he 1 i hghtm_n of Germany in a war with the Republic of Liberia
15 nof avsituation which frequently repeats itself; the uncertainties

that \accur in the transcription of ancient authors are, in general, of
a_mo mdnfldual character for them to be treated as mass phenomena.
The question of the trustw

‘ orthiness of the historical narratives of the
Bible is clearly unique and i

UNLIMITED REPETITION

quently and wniformly for them ¢ - L
; ve
phenomena, 5 © be considered as repetiti

10
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We state here explicitly: The rational concept of probability,
which is the only basis of probability calculus, applies only to prob-
lems in which either the same event repeats itself again and again, or
a great number of uniform elements are involved at the same time.
Using the language of physics, we may say that in order to apply the
theory of probability we must have a practically unlimited sequence
of uniform observations.

THE COLLECTIYE

A good example of 2 mass phenomenon suitable for the applica-
tion of the theory of probability is the inheritance of certain charie:
teristics, €.g., the colour of flowers resulting from the cultivation of
large numbers of plants of a given species from a given §¢ed. Here
we can eusily recognize what is meant by the words’f@ repetitive
event’, There is primarily a single instance; the growifighof onc plant
and the observation of the colour of its flowers\Fhen comes the
comprehensive treatment of a great number ofsfuch instances, con-
sidered as parts of one greater unity, The inditidual clements belong-
ing to this unity differ [rom cach other only, With respect to a single
attribute, the colour of the Aowers. | \J

In games of dice, the individualm@ﬁjﬂiﬂ-atﬂimgha'jhmgmbf the dice
from the box and the attribute is_the observation of the number of
points shown by the dice. [n the gaine ‘heads or Lails’, each toss of the
cein is an individual event, and the side of the coin which is upper-
most is the attribute. In life jnsurance the single event is the life of the
individual and the attril{fte’ observed is either the age at which the
individual dies or, mo’rcﬁenera}]y, the moiment at which the insurance
company beeomes liable for payment. When we speak of ‘the proba-
bility of death’, th¢®kact meaning of this expression can be defined in
the following svay only, We must not think of an individual, but of a
certain clasg™as’a whole, c.g., ‘all insured men forty-one years old
living ingajgiven country and not engaged in certain dangerous
occupatipns’. A probability of death is attached to this class of men
oz tg"aflother class that can be defined in a similar way, We can say
Rothing about the probability of death of an individual even if we
know his condition of life and health in detail. The phrase *prob-
ability of death’, when it refers to a single person, has no meaning
at all for us. This is one of the most important consequences of our
definition of probability and we shall discuss this point in greater
detail later on.

We must now introduce a new term, which will be very useful

11
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during the future course of our argument. This term is ‘the collee-
tive’, and it denotes a sequence of uniform events or processes which
differ by certain observable altributes, say colours, numbers, or
anything else. In a preliminary way we state: Al the peas grown by a
botanist concerncd with the probiem of heredity may be considered
as a collective, the attributes in which we arc interesled being the
different colours of the flowers. All the throws of dice made in
the course of a game form a collective wherein the atiribute of the
single event is the qumber of points thrown. Again, all the moldules
in a given volume of gas may be considered as a collectivee ad the
attribute of a single molecule might be ils velocity. A furl’h‘r:'rgx:-lmple
of a coltective is the whole class of insured men and wohien whose
ages at death have been registered by an insuraned oflice. The
principle which underlies the whole of our tregibhent” of the prob-
ability problem is that a collective must exist\before we begin to
speak of probability. The definition of probability which we shall
give is only concerned with ‘the probabiljjz\qf encountering a certain
attribute in a given collective’. \

% 3
NN

THE FIRST STEP TOWARDS A DEFINITION

After our previolbr didvrssighE&HDuld not be difficult to arvive at

a rough form of definition, of probability. We may consider a game
with two dice. The attribite of 4 single throw is the sum of the points
showing on the uppefsitles of the two dice. What shall we call the
probability of the aftribute ‘12, i the casc of each dic showing
Six points? Whetl, we have thrown the dice a large number of times,
say 200, and_ 0ted the results, we find that 12 has appeared a certain
number of tihes, perhaps five times. The ratio 5/200 = 1/40 is called
the .frqufzpey,_ Of more accurately the relative frequency. of the
3ttr1’9u£e 12’ in the frst 200 throws. If we continue the game for
?n. er 200 throws, we can find the torresponding relative frequency
205300 throws, and so on. The ratios which arc obtained in this way
Wil differ a Tittle from the first one, 1/40. If the ratios were to con-

e ..~;Lm;ett3 2s*.how considerable variation after the game had been
q Ii s%isn Wohoeot%:oooth, or a stll larger number of times, then the
-HIET there is a definite 1oy, i ' e

would not arise at ali. probability of the result *l

1 is essential for the theory of probability that
Cxperience has shown that in the game of dice, as Eﬂ all the other

mass phep e . .
Phenomena which we have mentioned, the relative A requencies
more and more stable as the number of
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value of the relative frequency’ later on; meanwhile, we assume that
the frequency is being computed with a limited accuracy only, so
that smail deviations are not pereeptible. This approximate value of
the relative frequency we shall, preliminarily, regard as the prob-
ability of the attribute in question, e.g., the probab:hty of the resuit
12" in the game of dice. It is obvious that if we define probability in
this way, it will be a number less than 1, that is, a proper fraction.

TWO BIFFERENT PAIRS OF DICE

T have here two pairs of dice which are apparently alike. By repeai-
edly throwing one pair, it is found that the relative frequency.ef*the
‘double 6" approaches a value of 0.028, or 1/36, as the numwber of
trials is increased. The second pair shows a relative frqueﬁey for the
‘12" which is four times as large, The firsi pair is usually/edlled a pair
of true dice, the second is called biased, but our deﬁﬁinon of prob-
ability applies equally Lo both pairs. Whether or ot % die is biased is
as irrelevant for our theory as 15 the moral mte&fxt,) of a patient when
a physician is diagnosing his iliness. 1800 thréws'were made with each
pair of these dice. The sum ‘12" appeareg, 48)times with the first pair

and 178 times with the second. The relative frequencics are
ww’w,dbl aulibrary.org.in

4-‘ 3

ﬁ = 3‘?::';:"7 0.027
and ‘: g

11301‘ 1[.1 = (.099,

These ratios became I‘B.LllCd ly constanl towards the end of the
series of irials, For m\\mce, after the 1500th throw they were 0.023
and 0.094 respeciively. The differences between the values calculated
al Lhis stage and Jater on did not exceed 10-15%,

b is 1mp0£>’9xble for me 1o show you a lengthy experiment in the
throwing,af dice during the course of this lecture since it would take
too longj%t 1s sufficient to make a few irials with the second pair of
dice tosee that at least one 6 appears at nearly every throw; thisis a
1esu?t very different from that obtained with the other pair. In fact,
it an be shown that if we throw one of the dice belonging to the
second pair, the relative frequency with which a single 6 appears is
about 1/3, whereas for either of the first pair this frequency is almost
exactly 1/6. In order to realize clearly what our meaning of prob-
ability implies, it will be useful 1o think of these two pairs of dice as
ofien as possible; each pair has a characieristic probability of show-
ing ‘double ¢’, but these probabilities ditfer widely.

13
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Here we have the ‘primary phenomenon’ (Urphiinomen) of the
theory of probability in its simplest form. The probability of a 6is a
physical properly of 4 given die and s a property anatogous to its
niass, specific heat, or electrical resistance, Similarly, for a miven pair
of dice (including of course the total setup) the probuability of a
‘double 6’ is a characteristic property, a physical constant belonging
to the experiment as a whole and comparable with ull ifs other
physical properties. The theory of probability is only concerned with
refations existing between physical quantities of this kind, O

N

L X
e Wa

LIMITING VALUE OF RELATIVE FREQULN GA

F have used the expression ‘limiting value’, which befe s to higher
analysis, without further explanation.™ We do not p€adé know much
about t.he mathematical definition of this ex pression, since we propose
10U it in a manner which can bo understopdby anyone, however
1gnorant of higher mathematics. Let ys calgulate the relative fre-
quency of an attribute in a collective, T}@ 48 the ratio of the number
of cases in which the atiribute has bee Found o the total number of
observations, We shall calculate it With a certain Fmited accuracy,
1€, 10 a certain number of decimal places without asking what the
fouo‘{“{lg ﬁgu;%nﬁghithebsmis&-if’br instance, that we play ‘heads
or tallf» a number of timesyand calculate the relative frequency of
heads’. If the number of gatmes is increased and if we always stop
at the same decimal pldCe In caleulatin g the relative frequency, then,

eventually, the resulfs of such calculations wil] ceasc to change. If
the.relatwe frequency of heads is calculated accuratcly to the first
decimal pla

ce, itywould not be difficulr 1o attain constuncy in this
first Approxinfdiion. In fact, perhaps after some 300 games, Lhis fivst
apProximafion will reach the value of 0.5 and will not change after-
the g o.n?lv u ta%(c s much longer to arrive at a constant value for
this(s‘t$ approximation, calculated to two decimal places, For

S PUTpose it may be Decessary to caleulate the relative frequency

SOOOLETVAS Of, say. 500 casts, L. afrer the 500th, 1000th, 1500th, and

) quired o, and 50 on, Perhaps more than 13,000 casts will be re-

¢ 10 show that now the second figur

TEMAInNS equgi to 0, 50 that the relative frequency remains constantly
course it is impossible to continue an experiment of this

O experimenters, Co-operating efliciently, may

© make up to 1000 observations per hoﬁ}, but not more.

{magi -
ron gh Llfl,r for example, that th; eXperiment has been continued for
' % and that the relative frequency remained constant at

¢ also ceases to change and
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0.50 during the last two hours. An astute observer might perhaps
have managed to calculate tbe third figure as well, and might
have found that the changes in this figure during the last hours,
although still occurring, were limited to a comparatively narrow
range.

Considering these results, a scientifically trained mind may easily
accept the hypothesis that by continuing this play for a sufficiently
long time under conditions which do not change (insofar as this is
practically possible), one would arrive at constant values for thes
third, fourth, and all the following decimal places as well. The
expression we used, stating that the relative frequency of the attribufe
‘heads’ tends to a limit, is no more than a short descriptionof the
situation assumed in this hypothesis. A\ hy

Take a sheet of graph paper and draw a curve with the otal
number of observations as abscissz and the valug{of’the relative
frequency of the result ‘heads® as ordinates. Ai{he)beginning this
curve shows large oscillations, but gradually theyBecome smaller and
smaller, and the curve approaches a straight fletizontal line, At last
the oscillations become so small that they,eaniot be represented on
the diagram, even if a very large scale istsed. Tt is of no importance
for our purpose if the ordinate of the\iia! horizontal line is 0.6, or
any other value, instead of 0.5, Thevimgbreahibpsincreife existence
of this straight line. The ordinatc ofithis horizontal line is the limiting
value of the relative frequency-sepresented by the diagram, in our
case the relative frequency @fthe event *heads’.

Let us now add furthey precision to our previous definition of the
collective. We will sa%thaf a collective s 2 mass phenomenon or a
repetitive event, or, ¥mply, a long sequence of observations for which
there are sufficienp teasons to believe that the relative frequency of
the obscrved aLLfyfbute would tend to a fixed limit if the observations
were indcﬁpiftjc\t‘y continued. This limit will be called the probability
of the aifribute considered within the given collecsive. This expression
being ‘a,jli\ft € cumbersome, it is obviously not necessary to repeat it
always,*Occasionally, we may speak simply of the probability of
heads’. The important thing to remember is that this is only an
abbreviation, and that we should know exactly the kind of collective
to which we arc referring, ‘The probability of winning a battle’, for
instance, has 10 place in our theory of probabi lity, because we cannot
think of a collective to which it belongs, The theory of probability
cannot be applied to this problem any more than the physical con-
cept of work can be applied to the calculation of the ‘work’ done by
an actor in reciting his part in a play.

15
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THE EXPERIMENTAL BASIS OF THE THEORY OF GAMES

It will be useful to consider how the fundamental experiment of
the determination of probability can b carried out in the other two
cases mentioned: 1 mean in the case of life insurance, and that of
molecules of a gas. Before doing this, T should like to add a few more
words on the question of games of chance. People may ask. ‘How do
we know for certain that a game of chance will develop in practice
along the lines which we have discussed, i.c.. tending lowards a
stabilization of the relative frequencies of the possible results '?Ns
there a sufficient basis for this important assumption in adfbal sc-
quences of experiments? Are not all experiments limited~lo # rela-
tively short initial stage " The cxperimental material is, hiotever, not
as restricted as it may appear at first sight. The greagSanibling banks
in Monte Carlo and elsewhere have colleeted datd felating to many
millions of repetitions of one and the same g3k, These banks do
quite well on the assumption of the existence & limitine value of the
relative frequency of cach possible result, The oceasional occurrence
of ‘breaking the bank’ is not an argumenbagainst the validity of this
theory. This could only be questiongthon the basis of a substantial
decrea_sc in the total earnings of tlic bank from the beeinning of its
operation to lg;&,pggi@giiﬁ%%q}g,. NG WOTSE, by the transformation
of a continued gain into a 1oss: 'I‘\’;%Dody who is acquainted with the
balance sheets of gambling*banks wouwld ever consider such a possi-
bility. The lottery beloggs,from this point of view, to the same class
as rouletie. Lotterieg™have been organized by certain governments
fo_l‘ decades, and ?l\c}\résults have always been in complefe acregmeit
with the assumption of constant values of the relative f req Hencies.

We thus so8 that the hypothesis of the existence of limiting values
of the relafive frequencies is well corroborated by a large mass of
experience vith actual games of chance. Only processes to which this
h}’?p{l{mms applies form the subject of our subsequent discussioil.

THE PROBARILITY OF BDEATH

The “probability of death’ is caicy] i b
t . ies
by a method very similar t e Which s B Rt

thod. ve 0 the one which we have used to define
:Bi(?‘i‘;’;’v‘tbggy in the case of the game of dice. The first thing needed
e g e @ lgle:t deﬁmtlon_of the collective for each single case.
Tables BaSelsl on ihn"laEy mention the compiling of the German Life
panies. These tabl ¢ Experience of Twenty-three Insurance Com-

€3¢ tables were calculated on the basis of 900,000 single

observati . ) )
16 Ons on persons whose lives were insured with one of the
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twenty-thres com panies.“ The observations covered the period from
the moment ol conclusion of the insurance contract until the cessa-
fion of this contract by death or otherwise. Let us consider, in
particular, the following colfective: *All men insured before reachimg
the age of forty after complete medical examination and witit the
normal preraium, the characteristic event being the death of the
insured in his forty-first year.” Cases in which the occwrence or non-
accurrence of this event could not be ascertained, ¢.g., because of a
discontinuation of the insurancs, were excluded from calculation, »
The number of cases which could be ascertnined was 85,020, Tl:nc
corresponding number of deaths was 940. The relative frequengydf
deaths or the deati-rate is therefore 940:85.020 = 0.01106;"This
figure was accepted, after certain corrections which we douiot need
10 be bothered with, as the probabilily of death occursing’in the
forty-first year for members of the above-described clasé/of insured
persons, L.e., for an exactly defined collective. \/

Tn this case 85,000 abservations have been assumed to be sufficient
for the relative frequency of deaths to become gractically equal to its
limiting value, that is, to a constant whichy réfers te an indefinitely
long series of observations of persons of \te sume category. This
assumption is an arbitrary one and, sfrietly speaking, it would be
wrong to expect that the above relg@hdbfrsdildingy AE8ES with the
true probability to more than the fitst three decimal places. In other
words, if we conld increase the' wumber of observations and keep
caleulating the relative frequendy of deaths, we can only expect that
the first three decimal p.lace”s’ iof the original death-rate, namely 0.011,
will remain unchanged XAl concerned in insurance business would
prefer the death-rateg'to be calculated on a broader basis; this, how-
ever, is difficult foldbvious practical reasons, On the other hand, no
fizure of this kind, however exact at the moment of its determination,
can remain yaiid for ever. The same is true for all physical data. The
scientists\ck{ermine the acceleration due to gravity at a certain place
on the giwrface of the earth, and continue to use this value until a new
detepmiination happens to reveal a chaunge in if; local differences are
weated in the same way. Similarly, insurance mathematicians are
satisfied with the best data available at the moment, and continue to
use a figure such as the above 0.011 until new and more accurate
calculations become possible, Tn other words, the insurance com-
panies continuc to assume that out of 1000 newly insured men of the
previously defined category, eleven will die in their forty-first year.
No significance for any other category is claimed for this figure 0.011L.
It is utter nonscnse to say, for instance, that Mr. X, now aged forty,
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has the probability 0.011 of dying in the course of the neat vear. If
the analogous ratio is calcvlated for men and women together, the
value obtained in this way is somewhut smaller than 0.017. and Mr.
X belongs to this sccond colleetive as much as 1o thi previously con-
sidered. He is, furthermore, & member of o sreat number of other
collectives which can be casily defined, and for which the caleulation
of the probability of death may give as many difivrent values. One
might suggest that a correct value of the probability of death for Mr.
X may be obtained by restricting the collective 1o which he bclongs\
as far as possible, by {aking into consideration more and morg'ef s
individual characteristics. There is, however. 1o cnd 1o thisJateess,
and if we go further and further into the sclection of the pismbers of
the collective, we shall be loft {inally with this indivig@ihalone. In-
surance companics nowadays apply the principle og goecalled ‘sefec-
tion by insurance’; this means that they take intd"gdnsideration the
fact that persons who enter carly into insuranc@Qentracts are on the
average of a differcnt type and have a differentdistribution of death
ages from persons admitted to the insurange ot a more advancad age.
It is obviously possible to go further ithig or other directions in the
limitation of the collective, It is, howbwer, equally obvious that in
trying to take into account a/f the(Properties of an individual, we
shall ﬁnallyxaﬁriwlfatalﬂhﬂmug’e@ﬁg-ﬁhding no other members of the
collective at all, and the co]lec,‘t]"ve: will cease to cxist altogether.

FIRST THE CO;—«?B%TIVE—-—THEN THE PROBABILITY

. N ;
['should like _to‘d}veﬂ a little on this last point, which implies 2
charactgnstlc difference between the definition ol probability as-
sumed in thegeJeétures and that which has been generally accepted

before, [ have;a]ready stated this once in the followin g short sentence:

We st‘gu;go‘t speak of probability until a collective has been defined".
In tl.]{:q’\ nunexion, it is of interest to consider the diametrically
PDesite viewpoint expressed by one of the ofder authors, Johannes
A~y KrleS,_“_ 'na once widely read book on the principles of the theoty
9P probability. He declares: ©. . . | shall assume therefore a definite
Probability of the death of Caius, i

of the next year. If, on the other hang
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comnexion with the true meaning of probability at all, this connexion
may ouly consist in a comprehensive description of a certain number
of single probabilitics.’

My opinion js that the ‘improper’ use of the probability notion,
as defined by von Kries, is in fact the only onc admissible in the
calculus of probability, This has been demonstrated in the foregoing
paragraph by means of the same example of the death probability as
was used by von Kries, and I have tried to show that any other
conception is impossible. T consider, quite generally, the introduetion
of the expression ‘probability in a collective’ as an important ‘im-
provement in word usage’. Two examples may help to clucidate ghisy
point further, O

Consider a lottery with one million tickets, Imagine thag.the first
prize has failen to ticket No. 400,000. People will consider this an
amazing and rare event; newspapers will discuss it, and*everybody
will think that this was a very improbable occurreded, On the other
hand, the essence of a lottery is that all precaution$yhave been taken
to ensure the same probability for a win for /@l tickets, and No.
400,000 has therefore exactly the same chagee‘of winning as all the
other numbers, for instance No. 786,331=famely the probability
1/1,000,000. What shall we think about this paradox? Another
example is given by Laplace™ in his fentthuedibsaryisgdiique: Tn
playing with small cards, on each 6f wehich is written a single letter,
selecting at random fourtcen of them and arranging them in a row,
one would be extremely amagzed to see the word *Constantinople’
formed. However, in this, case again, the mechanism of the play is
such as to ensure the sagie probability for each of the 261 possible
combinations of fourfecn letters (out of the twenty-six letters of the
alphabet). Why dawe nevertheless assume the appearance of the
word ‘Constantifiople’ to be something utterly improbable ?

The soluti’og‘})f these two seeming paradoxes is the same, The
event thai he first prize will fall to ticket No. 400,000 has, in
itself, npzfp}obability’ at all. A collective has to be defined before the
word,probability acquircs a deflinite meaning, We may define this
collegtive to consist of repeated draws of a lottery, the attribute of
thevparticular draw being the number of the ticket drawn. In this
collcetive each number has exactly the same probability as No.
400,000. However, in speaking of the ‘improbability’ of the number
400,000, we have in mind a collective of a different kind. The above-
mentioned impression of improbability would be created not only
by drawing the number 400,000, but all numbers of the same kind:
100,000, 200,000, ete. The collective with which we have to deal has
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therefore only the two following attributes-—cither the number does
end with five 0%s, or it docs not. The tirst-named atiribule Jas the
probability 0.00001, the sccond 0.99999. i.c.. ncarly 100,000 times
larger. In an alternative between the draw of 4 number containing
five 0’s and that of 4 number not having 1liis property. (he second
result has indeed 4 very much larger probability.

Exactly the same considerations apply to ihe second example.
What astonishes us in the case of the word ‘Constantinople’ is the

. fact that fourteen letters, taken and ordered at random, shotddNorm

a well-known word instead of unreadable gibberish. Aghong the
immense number of combinations of fourteen letters (26X, ot about
10%), not more than a few thousand correspond {ovords. The
elements of the collective are in this case all the,Possible combina-
tions of fourteen letters with the alternative atigibiites ‘coherent’ or
‘meaningless’. The second attribute (*meanidgless’) has, in this col-
lective, a very much larger probability thamthe [irst one, and that is
why we call the appearance of the word SBmstanting ple’—or of any
other word—a highly improbable eveat.

In many appropriate uses of the prb]jabi]ity notion in practical life
ll;)he _co]lecti\l;? can be easily constructéd. In cases where this proves tc;

¢ 1mpossible, the use of thetword. probability. from the point ¢
view of the rationg %h%@?%;ﬁgfﬁ%%ﬁity, is aniﬂlcgitimalc (};)ne, and
numerical determinationaf the probability valuc is therefore im-
possible. In many case§ the collective can be defined in several ways
and these are casqgi;} which the magnitude of the probability may
1?30011_13 a subje&\uf' ‘Controversy. Tt is only the notion of probability
i a given colleefive which is unambiguous.

0
/>»” PROBABILITY IN THE GAS THEQRY

%,,ﬁow return to our preliminary survey of fields in which the
’lt}ebry of probability can be applied, and consider the third example
R hat ofmo!ecular physics—rather more closely. In the investi gation
~O of the behaviour of molecules in a gas we encounter conditions nof

' m those prevailing in the two applications of

essentially different fro
probability we have previously discussed. In this case, the collective

can be formed, for instance, by all molecules present in the volume

2? ﬁills enclosed by the walls of 3 cylinder and a piston. As attributes
'threee ls_zlétg;e elelments {molecules), we may consider, for instance, t.he
vector i ngular components of their velocities, or the velocity

ritself. It is true thai nobody has yet tried to measure the

act;;l velocities of all the single molecules in 4 gas, and to calculate
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in this way the relative frequencies with which the different values
oceur. Instead, the physicist makes certain theoretical assumptions
concerning these frequencies (or, more exactly, their limiting values),
and tests experimentally certain consequences, derived on the basis
of these assumptions, Although the possibility of a direct determina-
tion of the probability does not exist in this case, there is nevertheless
no fundamental difference between it and the other two examples
treated. The main point is that in this case, too, all considerations
are based on the existence of constant limiting values of relative frel >
querncies which are unaffected by a further increase in the numbex, of
elements concerned, i.c., by an increase in the volume of gas\'lmd’er
consideration.  \

In order to explain the relation between this probleémi and the
previous example of the probability of death established by direct
counting, we may think of the following analogy,A\surveyor may
have to make calculations relating to a right-angled¥iangle, e.g., the
evaluation of its hypotenuse by means of the Pythagorean theorem.
His first step may be to establish by diregt imeasurement that the
angle in the triangle is sufficiently near t@'90%. Another method which
he can apply is to assume that this angle¥s 90°, to draw conclusions
from this assuroption, and to verif ‘thﬁgyb ,gqn}_arjsqn with the
experimental results. This is the sitlation Th Which the phySicist finds
himself when he applies statistigal methods to molecules or other
particles of the same kind. Fhe physicists often say that the velocity
of a molecule is ‘in pringiple” a measurable quantity, although it is
not possible Lo carryg cq’t.fhis measurement in practice by means of
the usual measuring devices. (At this stage we do not consider the
medern developmgat of the question of the measurability of molec-
ular quantitics)Similarly, we can say that the relative frequency and
its limiting value, the probability, are determined in the molecular
collective {ity principle’ in the same way as in the cases of the games
of chan\c&ahd of soctal statistics which we have previously discussed.

e )

N\ AN HISTORICAL REMARK

& \

The way in which the probability concept has been developed in
the preceding paragraphs is widely different from the one which the
older textbooks of probability calculus used in formally defining
their subject. On the other hand, our foundation of probability is in
1o contradiction whatsoever to the actual content of the probability
concept used by these authors. In this sense, the first pages of
Poisson’s!? famous textbook, On the probability of the judgments of
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courts of justice, are very instructive. Poisson says that a certain
phenomenon has been found to accur in many different fields of
experience, namely, the fact which we have described ahove as the
stabilization of relative frequencies with the increasc in the number
of observations. In this connexion, Poisson uses an expression which
1 have avoided up till now on account of a prevailing confusion re-
garding its interpretation. Poisson calls the fact thal the relative
frequencies become constant, after the sequence of cxperiments h
been sufficiently extended, the Law of Large Numbers. He considels
this law 1o be the basis of a theory of probability, and we fully dgree
with him on this point. In the actual Investigations which folpw“the
introduction, however, Poisson starts not [rom this law, but from the
formal definition of probability introduced by Laplagel™{We shall
have to speak about this definition later.) From It¢h€ deduces, by
analytical methods, a mathematical propositione Which he also calls
the Law of Large Numbers. We shall see later om\that this mathema-
tical proposition means something very diffesdril from the general
empirical rule called by the same name at the beginning of Poisson’s
book. This double use of the same eXpIRsSion 1o describe two widely
different things has caused much confiision, and we shall have to
return 1o this point again: iE will form the subject of the fourth chap-
ter. At that pOfﬁﬂ‘t’éﬁ;‘fﬁT WY qinble fhie cxact words in which Poisson
states the empirical rule of the constancy of the relative frequencies
with large numbers of obserPations as the foundation of the theory of
probability. In the meaptime 1 ask you not to associate any definite
meaning with the expression ‘The Law of Large Numbers'.

Let me add thatyo coneeption of the sequence of observations as
the cornetstone dsivthe foundation of the theory of probability, and
our c_leﬁmtion oF probability as the relative frequency with which
certain eve.r}t’sbdr properties recur in these sequences, is not something
{:lbsolqt Dew. In a more dialectical form and without the immediate
1nten§n§)h_ f developing a theory of probability calculus on this basis,
the same ideas were presented as carly as 1866 by John Venn'? in his

D00k Logic of Chance, The development of the so-called theory of

finite populations by Theodor Fechner™ and Heinrich Bruns® is
closely related to our frequency theory of probability. Georg Helm,*
who playec} a certain part in the foundation of the energy ;l‘iﬂCipie’
expressed ideas very similar to ours in lis paper on ‘Probabilify
Iheory as the Theory of the Coneept of Collectives’, which appeared
11 1902. These attempts, as well as many others which time docs not
allow us to enumerate, did not lead, and could not lead, to a com-
plete theory of probability, because they failed to realize one decisive
22
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fcature of a collective which we shall discuss in the following
paragrapl.

RANDOMNESS

The condition that the relative frequencies of attributes should
have constant limiting values is not the only one we have to stipulate
when dealing with collectives, i.e., with sequences of single observa-
tions, mass phenomena, or repetitive events which may appropriately
serve as a basis for the application of probubility theory. Examples
can casily be found where the relative frequencies converge toiwards
definite limiting values, and where it is nevertheless not appropriate
to speak of probability. Imagine, for instance, a road alohg which
milestones are placed, large ones for whole miles and ginaller ones
for tenths of a mile. If we walk long enough along\i® road, calcu-
lating the relative frequencies of large stones, the Yahie found in this
way will lie around 1/10. The value will be ex ¥ 0.1 whenever in
each mile we are in that interval between two&mall milestones which
corresponds to the one in which we startedd Bhe deviations from the
value 0.1 will become smaller and smallér)as the number of stones
passed increases; in other words, | %IJB@&Y&;@PQ%‘%@& tends to-
wards the limiting value 0.1. This rosalt may induce us to speak of a
certain “probabiiity of encountering a large stonc’. Nothing that we
have said so far prevents us {roth doing so. It is, however, worth
while to inquire more closely(into the obvious difference between the
case of the milestones ag&,the cases previously discussed. A point
will ¢merge from this hﬁt iry which will make it desirable to restrict
the definition of a ¢@llective in such a way as to exclude the case of
milestones and bler cases of a similar nature. The sequence of
obscrvations ofNarge or small stones differs essentially from the
sequence of (observations, for instance, of the results of a game of
chance, iz}%hét the first sequence obeys an easily recognizable {aw,
Exactly.every tenth observation leads to the attributc ‘large’, all
otheps\to the attribute ‘small’. Aficr having just passed a large stone,
We &€’ in no doubt about the size of the next one; there is no chance
of ifs being large, If, however, we have cast a double 6 with two dice,
this fact in no way affects our chances of getling the same result in
the next cast. Similarly, the death of an insured person during his
forty-first year does not give the slightest indication of what will be
the fate of another who is registered next to him in the books of the
fusurance company, regardless of how the company’s list was
prepared.
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This difference between the two sequences of obscrvations is
actually observable. We shall, in future, consider only such sequences
of events or observations, which satisfy the requirements of complote
lawlessness or ‘randomness’ and refer to them as collectives. In cor-
tain cases, such as the onc mentioned above, where thers is no
collective properly speaking, it may sometimes be useful to have a
short expression for the limiting value of the relative frequency. We
shall then speak of the ‘chance’ of an attribute’s occurring in an un-
limited sequence of observations, which may be called an improger
collective. The term ‘probability’ will be reserved for the hahiing
value of the relative frequency in a true collective which satighiesthe
condition of randomness. The only question is how to destribe this
condition exactly enough to be able to give a sufficienitly precise
definition of a collective. &0 )

DEFINITION OF RANDOMNIESS : PLAQE SELECTION
AW

On the basis of all that has been said, gifappropriate definition of
randomness can be found without njubh) difficulty. The cssential
g!ﬂ‘erené:e }?etween the sequence of the-results obtained by casting

ice and the regular ence of larg® and small milestones consists
in the possibilit ’%P’(fﬁe%fciilgﬁ}%%é% 't#(% lgf selecting the elements so as
to produce a fundamental chafige in the relative frequencies.

We begin, for instance, with & large stone, and register only every
second stone passed. Théelation of the relative frequencies of the
small and large ston@iﬁ Dow converge towards 1/5 instead of 1/10.
(We miss none ofithe arge stones, but we do miss every second of
the smail ones.). If\the same method, or an y other, simple or compli-
cated, method~qf selection is applied to the sequence of dice casts,
the effect willalways be nil; the relative frequency of the double 6,
for_ ins ngl‘:;’will Temain, in all selocted partial sequences, the same
as i thepriginal one (assuming, of course, that the selected sequences
are }gigg_ enongh to show an approach to the limiting value). This im-
Rossibility of affecting the chances of a game by a system of selection,
thifs uselessuess of ail systems of gambling, is the characteristic and
decisive property common to al sequences of observations or mass
phenon:_nena which form the proper subject of probability calculus.

In this way we arrive at the following definition: A collective ap-

o : f the theory of probability must fulfil

;E:s:?; g&g&{ls- I:lrlSt, thes relative frequencies of the attributes must
ng values, Second, these limitine + ain

the same in all partial sequ mg values must rem

) ences which may be selected from the
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otiginal one in an arbitrary way. Of course, only such partial se-
quences can be taken into consideration as can be extended indefi-
nitely, in the same way as the original sequence itself. Examples of
this kind are, for instance, the partia! sequences formed by all odd
members of the original sequence, or by all members for which the
place number in the sequence is the square of an integer, or a prime
numbcer, or & number selected according to some other rule, whatever
it may be, The only essential condition is that the question whether
or not a certain member of the original sequence belongs to thé™
selected partial sequence should be settled independently of the result
of the corresponding observation, i.e., before anything is_Kitown
about this result. We shall call a selection of this kind a placeiselec-
tion. The limiting values of the relative frequencies in asgdllective
must be independent of all possible place selections,” By place
selection we mean the selection of a partial sequengein such a way
that we decide whether an element should or showldlot be included
without making use of the attribute of the clemeris, 1.e., the result of
our game of chance. \\

X 3
S

THE PRINCIPLE OF THE IMPOSSIBILITY OF A
GAMBLINE\@'\’Edbmlibr‘al'y_or‘g_m

We may now ask a question, sithilar to one we have previously
asked: ‘How do we know that“collectives satisfying this new and
more rigid requirement ree%ty exist?” Here again we may point to
experimental results, and these are numerous enough. Everybody
who has been to Monte\Carlo, or who has read descriptions of a
gambling bank, knows how many ‘absolutely safe’ gambiing systems,
sometimes of an €Rotmously complicated character, have been in-
vented and triedl but by gamblers: and new systems are still being
suggested eve{y/day. The authors of such systems have all, sooner or
later, had. fite’sad experience of finding out that no system is able to
improve their chances of winning in the long run, ie., to affect the
relativesfrequencies with which different colours or numbers appear
i,rr"d; sequence selected from the tofal sequence of the game. This
cexperience forms the experimental basis of our definition of prob-
ability.

An analogy presents itself at this point which I shall briefly discuss,
The system fanatics of Monte Carlo show an obvious likeness to
another class of ‘inventors’ whose useless labour we have been
accustomed to consider with a certain compassion, namely, the
ancient and undying family of constructors of ‘perpetual-motion’
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machines. This analogy, which is not only a psychological one, is
worth closer consideration. Why does every educated man smile
nowadays when he hears of a new attempt to construct a perpetual-
motion machine ? Because, he will answer, he knows from the law of
the conservation of energy thal such a machine is impossible. How-
ever, the law of conservation of energy is nothing but a broad
generalization—however firmly rooted in various branches of physics
—of fundamental empirical results, The failure of all the in numerable
attempts to build such a machine plays a decisive role among\(hese.
Tn theoretical physics, the energy principle and its varioud_dpplica-
tions are often referred to as ‘the principle of the impossibility of
perpetual motiot’. There can be no question of proying the law of
conservation of energy—if we mean by ‘proof” somdthing more than
the simple fact of an agreement between a pfisieiple and all the
experimental results so far obtained. The chdfatter of being nearly
self-evident, which this principle has acquired for vs, is only due to
the enormous accumulation of empiriéah ‘data which confirm it
Apart from the unsuccessful atteraptss fo construct a perpetual-
motion machine—the interest of whicl is now purely historical—all
t]ﬁe t‘:ﬁhél_i‘m t1“'f"f3thOdS of transfopmation of encrgy are evidence for
the validity of the engrgy prisiple. . ’
By generalizﬁ%%%gli%%{ﬁggfg 1111113 gambling banks, deducing
from it the Principle of tie if‘npossibi]ity of a Gambling System, and
including this principiedivthe foundation of the theory of probability,
we proceed in thesame way as did the physicists in the case of
the energy Pfln(sq}lé'. In our case also, the naive attempts of the
huntc_rs of forQme are supplemented by more solid experience,
especially th\at ‘of the insurance companies and simiiar hodies. The
results obtdiiied by them can be stated as follows, The whole financial
baSIS,Q?: ﬁ_fSllrance would be questionable if it were possiblc to change
th&;\{:latwe frequency of the occurrence of the insurance cases
‘(c?eét S, ete.) by excluding, for example, every tenth one of the in-
i ‘ﬁ?ﬁ;eépi-;;ﬁisﬁtor bf}" some other selection principle. The principle of
N\ mp ¥ ot a gambling system has the same importance for
/- the insurance companies as the principle of the conservation of
energy for the electric power station: it is the rock on which all the
;lalllct}llatlons rest. We can characterize these two principles, as well as
whi Cailr-rga?hmg laws of nature, by saying that they are restrictions
W Impose on the basis of our previous experience, upon our
eXpectation of the further coyrse of natural events, (This formulation
goes back to E, Mach.) The fact that predictions of this kind have

bezn repestedly verified by tXperience entitles us to assume the
6
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existence of mass phenomena or repetitive events to which the
principle of the impossibility of a gambling system actually applies.
Only phenomena of this kind will be the subject of our further
discussion,

EXAMPLE OF RANDOMNESS

To order to illustrate the randomness in a coilective, I will show a
simple experiment. It is again taken from the field of games of chance
this is only because experiments on subjects belonging to other figlds
in which the theory of probability finds its application reQuite
apparatus much too elaborate to be shown here. O

T have a bag containing ninety round discs, bearing thespumbers
I to 90. T extract one disc from the bag at random, I ninte whether
the number it bears is an odd or an even one and teplace the dise. T
repeat the experiment 100 times and denote all thedodd numbers by
I’s. and all cven numbers by 0%. The fol]ow{Qg table shows the

result: 40
11000 1 135 1
001100.11”111
0 1 61 OWQ)\\:’:hleUIQDI'EQ‘y‘OI'g‘in
010601 6011 1
00t 1 050 00 1 1
01 ! LITYO 1t 01 0
101mQ‘110011
0001 01 11 0 1
00} 1 00 11 0 i
0Ch 1 0001000
X

Among 100,{'}{perimental results we find fifty-one ones; in other
words, the telative frequency of the result 1 is 51 [100, If we consider
only the ﬁ%gb third, fifth draw, and so forth, i.e., if we take only the
figures iti\the odd columns of the table, we find that ones appear in
twentg-four cases out of fifty; the relative frequency is 48/100. Using

rﬂy; the numbers in the odd horizontal rows of the table, we obtain,
fowthe relative frequency of the result 1, the value 50/100. We may
further consider only those results whose place in the sequence corre-
sponds o one of the prime numbers, ie., 1,2, 3, 5,7, 11, 13, 17, 19,
23,29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.
These twenty-six draws have produced thirteen 1I’s, the relative fre-
quency is thus again exactly 50/100. Finally, we may consider the 5!
draws following a result 1. (A ‘system’ gambler might prefer to bet
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on O after 1 has just come out.) We find in this selection of results
twenty-seven s, i.e., the refative frequency 27/51, or about 53100,
These calculations show that, in all the different selections which we
have tried out, the I’s always appear with a relative frequency of
about 1/2. T trust that this conveys the feeling that more extensive
experiments, which I am not able to carry out here because of the
lack of time, would demonstrate the phenomenon of randomness
still more strikingly.

It is of course possible, after knowing the results of the hundrad
draws, to indicate a method of sclection which would prodyeg only
I’s, or only 0°s, or 1’s and O's in any desired proportion, 4ty also
possible that in some other group of a hundred experimaafs, analo-
gous to the one just performed, onc kind of selectiomiinay give a
result widely different from 1/2. The principle of Zmndomness re-
quires only that the relative frequency should epnverge to 1/2 when
the number of results in an arbitrarily selggted partial sequence
becomes larger and larger. N

O
SUMMARY OF THE/REFINITION

_F'do not need to insist here on sitithematical details and such con-
siderations wiiehv HGESSiry for making the definitions
complrj:te from a mathematieal point of view. Those who are inter-
ested in this question may refer to my first publication on the
foundation of probability caleulus (1919) or to my textbook of the
theory of probabﬂi{!)gJQSI), presenting the theory in a simplified and,
it seems to me, improved form, (See Notes and Addenda, p. 224.) In
my third [e{;tux;e Jwill deal with various basic questions and with
different objecjtic’ms 1o my definition of probability and these I hope
to be ableyto’ refute. I frust that this discussion will dispel those
doub_ts:whxch may have arisen in your minds and further clarify
certaiNpoints,

Jclosing this first lectyre

AAons which we have found
N\ ture discussions. These
of mathematical probabili
use this concept.

1. It is possible to speak about iiti in reference 10 2
properly defined colleé)tive. probabilities only in reference

Obi;erﬁa:iﬂ; lec‘;}x}%is. 8 mass phenomenon or an unlimited sequence of
frEquencienS fll( lling the following two conditions: (i) the relative
28 > OF particular attributes within the collective tend to fixed

» May I summarize briefly the proposi-
and which will serve as a basis for all
PYOPositions are equivalent to a definition
ty, 10 the only sense in which we intend to
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binits; (i1) these fixed limits are not affected by any place selection.
That is to say, if we caleulate the relative frequency of some attribute
not in the original sequence, but in a partial set, selected according
to some fixed rule, then we require that the relative frequency so
calculated should tend to the same limit as it does in the original sct.

3. The fulfilment of the condition (if) will be described as the
Principle of Randomness or the Principle of the Impossibility of a
Gambling System.

4. The limiting value of the relative frequency of a given attributed
assumed to be independent of any place selection, will be called ‘the
probability of that attribute within the given coliective’. Whensver
this qualification of the word ‘probability’ is omitted, this 'o’m}ssion
should be considered as an abbreviation and the necessigyfor refer-
ence to some collective must be strictly kept in mind. 7.\

5. If a sequence of observations fulfills only theJirst condition
{existence of limits of the relative frequencies), buiwiot the second
one, then such a jimiting value will be called.the ‘chance’ of the
occurrence of the particular attribute rather {hg}n Its ‘probability’.

P
S\
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SECOND LECTURE

The Elements of the Theory of
Probability \

O

NS ¢
IN the first lecture T have already mentioned thatthe conception
which I developed there, defining probability as th&fimiting value of
an- observable relative frequency, has its appenents. In the third
lecture T intend to examine the objections watsed against this defi-
nition in greater detail. Before doing this:,;}s'hould like, however, to
describe briefly the application of thefundamental definitions to real
events, how they can be used for solvihg'practical problems in short,
I shall discuss their general valueand utility. ‘The applicability of a

. P - - " 5t
theory to real\lﬂ/f Pl ANYbPRiRSHe iR not the oniy, then the mo
Important test of ifs valye, RN
THE THEQRY OF PROBABILITY IS A SCTENCE SIMILAR TO
¢(\J OTHERS
N\

I begin with a~sﬁ>ﬁement which will meet with the immediate oppo-
it e0ry of probability is a science
fundamentat@ different from a]l the other sciences and governcd by
& special kind of logic. It has been asserted-—and this is no over-

€reas other sciences draw their conclusions from

wha ¢ know, the science of probability derives its most important
;g;ults from what we do not know, *Our absolute lack of knowled ge

. . R 1
> onditions under which a die falls, says Czuber,
Causes us to -

% conclude that each sige of the die has the probability
V6. If, T of knowledge were as complete as Czuber
assumes it o be, hoy could we distin guish between the two pairs of
oEs ing lectyre 9 Yet, the probability of casting
6" with one of them‘i’s considerably different from 1/6—at least,

1ave nothing to do with assumptions as fantastic as
30
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that of a distinct kind of logic used in the theory of probability. Twice
two are four; B and the contrary of B cannot both follow from one
and the same true premise—any morein the theory of probability than
elsewhere. And ex nihilo nikil is true in the theory of probability as
well. Like all the other natural sciences, the theory of probability
starts from observations, orders them, classifies them, derives from
them certain basic concepts and laws and, finally, by means of the
usual and universally applicable logic, draws conclusions which ¢an
be tested by comparison with experimental results. In other words,
in our view the theory of probability is a normal science, distin guished
by a special subject and not by a special method of reasoning. A

2\
"\

THE PURPOSE OF THE THEORY OF PROBABILI\T.Y\'

From this sober scientific point of view, which assuihes that the
same laws of reasoning, and the same fundamental methods are appli-
cable in the theory of probability as in all othéx’stiences, we can
describe the purpose of the theary of probabilij&a’s follows: Certain
collectives exist which are in some way linked a¥ith each other, e.g.,
the throwing of one or the other of two dice scparately and the
throwing of the same two dice togethér form three collectives of
this kind. The first two collectives-detderinlbiss Yiird dne, i.c., the
one where both dice are thrown ogather. This is trye so long as the
two dice, in falling together, do uaf influcnce each other in any way.
if there is no such interaction, éxperience has shown that the iwo
dice thrown together give again a collective such that its probabilities
can be derived, in a simpléway, from the probabilities in the first two
collectives. This derivition and nothing else is here the task of
probability calculys{In this problem the given quantities are the six
probabilities of thelsix possibie results of casting the first die and the
six similar probabilities for the second die. A quantity which can be
calculated ispfor example, the probability of casting the sum ‘10’
with the pwe dice.

This‘i,s: very much like the geometrical problem of calculating the
lengh.of a side of a triangle from the known lengths of the two other
sidesand the angle formed by them. The geometer does not ask how
thedlengths of the two sides and the magnitude of the angle have been
measured; the source from which these initial elements of the
problem are taken lies outside the scope of the geometrical problem
itself, This may be the busincss of the surveyor, who, in his turn, may
have to use many geometrical considerations in his work. We shall
find an exact analogy to these relations in the interdependence of
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statistics and probability. Geometry proper teaches us only how to
determine certain unknown quantitics from other quantities which
are supposed to be known—quite independently of the actual values
of these known quantities and of their derivation. The caleulus of
probability, correctly interpreted, provides us. for instance, with a
formula for the calculation of the probability of casting the sum “10°,
or the ‘double 6, with two dice, a formula which s of general
validity, whichever pair of dice may be used. e.g., one of the two
pairs discussed in the preceding lecture, or another pair formed{from
these four dice, ora completely new and different set. The six.prob-
abilities for the six sides of the first die, and the corresponding set of
six probabilities for the second die, may have any conceivable values,
The source from which these values are knowi 18 irrelévant, in the
same way in which the source of knowledge of thegeometrical data
is drrelevant for the solution of the geometrigahproblem in which
these data are used, '

A great number of popular and more anless serious objections to
the theory of probability disappear at ehce when we recognize that
the exclusive purpose of this theory¥§ 10 determine, from the given
probabilities in a number of initial collectives. the probabilitics in a

new collective derived from the initial ones. A mathematician teased

wi.th the question, ‘Can u caleillate the probability that I shall not
miss the next #ri ! }ﬂﬁﬁb@ %ﬁ%‘ gﬁ)&gnsirer it in %he same Way as
he would decline to answer the question, ‘Can you calculate the
dlstance_ between thesé\fwo mountai a .
that a distance can 6nly be calculated if other appropriate distances
and angles are keQwn, and that g probability can only be determined
from the knoyyl.’nge of other probabilities on which it depends.

_ Becausr_: certain elements of geometry have for a jong time been
included m"_the general course of education, every educated man is
able t.o‘;d\IBtmgL}ish between the practical task of the land surveyor
a{td\t@el theoretical investigation of the geameter. The corresponding
distinction between the theory of probability and statistics has yet to

TREE BEGINNING AND THE END OF EACH PROBLEM

MUST BE PROBABILITIES

1 The conclusion at which we
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arrived in the last paragraph can be restated by saying: In a problem
of probability culculus, the data as weltas the results are probabilitics,
Emphasis was laid above on the first part of this statement, namely,
the starting point of all probability calculations. T should like to add
a few words concerning the second part.

The result of each calculation appertaining to the field of prob-
ability is always, as far as our theory goes, nothing else but a
probability, or, using our general definition, the relative frequency
of a certain event in a sufficiently long (theoretically, infinitely long),
sequence of observations. The theory of probability can never lead
to a definite statement concerning & single event. The only question
that it can answer is: what is to be expected in the course of ) veiy
long sequence of observations? It is important to notg‘j't’hait this
statement remains valid also if the calculated probability has one of
the two extreme values 1 or 0. S

According to the classical theory of probability, dud to some new
versions of this theory, the probability value 1 means that the corre-
sponding event will certainly take place. If weydccept this, we are
admitting, by implication, that the knowleggevof a probability value
can enable us, under certain circumstances, to predict with certainty
the result of any one of an infinite nuber of cxperiments. If, how-
ever, we define probability as thevhebitingbvalyeoog ithe relative
frequency, the probability value 1 does not mean that the correspond-
ing attribute must be found in every one of the elements forming the
collective. This can be illusqned by the following example:

Imagine an jnfinite sequente of elements distinguished by the two
different attributes A'and B. Assume that the sequence has the
t‘ollowing structure :(/Rirst comes an A, then a B, then again an A,
then a group of: 1§& Consecutive B’s, again one A, then a group _of
three B’s, and &3 on, the single A’s being separated by steadily
growing groups’of B's:

-\ ABABBABBBABBBBABBBBB . . .

Thi\s. 15 a regular sequence of symbols; it can be represented by a
?Vdillematical formula, and it is easily ascertained that, with the
ingreasing number of elements, the relafive frequency of the attribute
A converges towards 0, whereas the relative frequency of B con-
verges towards unity. The same thing can occur also in irregular
sequences, Once an atiribute is rare enough, it is possible that its
relative frequency, although never attaining the value 0, converges to
this value with increasing length of the sequence. In other words, its
limiting value may be 0. We sce, therefore, that the probability 0
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means only a very rare—we may say, an infinitely rare--occurrence
of an event, but not its absolute impossibility. In the same way the
probability 1 means that the corresponding attribute oceurs nearly
always, but not that it must be necessarily found in each obscrvation.
In this way the indeterminate character of all statements of the prob-
ability theory is maintained in the limiting cases as well.

It remains now to give a more detailed consideration as to what
is meant by the derivation of one collective from another, an operation
to which we have repeatedly referred. It is only from a clear congep-
tion of this process that we can hope to recognize fully the nature'of
the fundamental task of probability calculus. We shall be§ih,'this
investigation by introducing a new, simple expression avhich will
permit us to make our statements in a clearer and simpler way. It is
at first only an abbreviation; later, however, it will lgad, us to a slight
extension of the concept of a collective. (¥

a \Y

DISTRIBUTION IN A cc}LQE.cTIVE

Th_e elements or members of a collebtive are distinguished by
certain attributes, which may be numBels, as in the case of the game
of dice, colours, as in roulette (rougé ef noir), or any other observable
properties. Thesmallestutumbeyofidsfierent attributesin a collective is
two; in this case we call it a :s'fna};fe alternative. In such a collective
there are only two probabilities, and, obviously, the sum of these two
must be 1. The game of *heads or tails’ with a coin is an example
of suc_h an alternative; “With the two distinctive attributes being the
two dlﬂ'er_ent faces\bf'the coin. Under normal conditions, each of
these attributes has’ the same probability, 1/2. 1n problems of life
msurance we@lso deal with a simple alternative. The two possible
events are, fo example, the death of the insured between the first and
;he lqs§ Q@‘ of his forty-ﬁrs‘f year, and his survival beyend this time.
n tl}!s\ex'ample, the probabﬂlty of the first event is 0.011 and that of
thegeeond one 0.989. In other cases, such as the game of dice, more

attributes are involved, A cast with oﬁe die can give six

ponding to the six sides of the die, There are

. mis again 1, If all the six results
%\Z eqﬁallﬁlprobalz?le, _the single probabiljt%es all have the value 1/6.
e C?l . ah i¢ of this k111_q an unbiased one. However, the die may be
sed; the six probabilities will still be proper fractions with the

sum 1, although not all i
iy ko %’ L not equal to 1/6, The values of these six proba-

w if i ective is ¢
considered as givon, the corresponding collective is to be
34



THE ELEMENTS OF THE THEORY OF PROBABILITY

It is useful to have a short expression for denoting the whole of the
probabilities attached to the different attributes in a collective. We
shall use for this purpose the word distribution. If we think of the
distribution of chances in a game of chance, the reasons for this choice
of term will be easily understood. If, for instance, six players bet, each
on one of the six different sides of a die, the chances are ‘distributed’
i1 such a way that the relative chance of cach of the players is equal
to the probability of the side which he has chosen, If the die is an
unbiased one, all the chances are equal; they are then uniformly
‘distributed’, With a biased die, the distribution of chances is non-
uniform. in the casc of a simple alternative the whole distribution
consists of two numbers only, whose sum is 1. To illustrate{the/
meaning of the word ‘distribution’, one can also think of how/the
different possible attributes are distribured in the infinite segtiénce of
elements forming the collective. If, for instance, the Ieu.mbers 1/5,
3/5, and 1/5 represent the distribution in a colleotivés with three
attributes A, B, and C, the probabilities of A and Eb%ing 1/5 each,
and that of B being 3/5, then in a sufficiently longgequence of observ-
ations we shall find the attributes A, B, and C{distributed’ in such a
way that the first and third of them oecur iR1/5 of all observed cases
and the second in the remaining 3/5.  \J

\arWEméle‘auIibrar‘y_m'g_in
PROBABILITY OF A HIT; C‘O:N;l"l?\'l,l'(}US DISTRIBUTION

The concept of distribution defined above leads to the considera-
tion of certain cases which hake*been so far left aside. Imagine a man
shooting repeatedly at %}épget. This is a repetitive cvent; there is
nothing to prevent it fromvbeing, in principle, continued indefinitely.
By assigning a numberto each concentric part of the target, begin-
ning with 1 for thabull’s-eye, and ending with the space outside the
last ring, we cafistharacterize cach shot by means of a number. So
far there is dthing unfamiliar in the example; the number of different
aftributes Of'the collective which, together with the corresponding
probabilities, makes up the distribution, is equal to the number of
differént concentric regions of the target. Naturally, in order to be
able fo speak of probabilities at all, we must assume that the usual
conditions concerning the existence of limits of frequencies and of
randommness are satisfied.

We may, however, treat the same example in a slightly different
way, We may measure the distance of each hit from the centre of the
target and cousider this distance as the attribute of the shot in
question, instead of the number assigned to the corresponding ring.

35
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‘Distance’ is then also nothing but a number---tie number of anits
of length which can be marked off on a straight line hetween two
given points. As long as we measure this distance in whole centi-
metres only, the situation is not very different from that previously
described, and each shot is characterized, as before, by an integer. If
the radius of the target is I metre, the number of different possible
attributes is 101, namely, the integers from O to 100; consequently
there are 101 different probabilities, and the distribution consists of
101 proper fractions giving the sum 1. Everyone, however. feclsthat
the measure of a distance in centimetre units is not an adeQuate
expression of the notion of distance. There are more thag\ulst 101
different distances between 0 and 1 metre. Geometey teallies us that
distance is a continuous variable, which may assumgseyery possible
value between 0 and 100, i.e., values belonging to the infinite set of
fractional numbers as well as those belonging.$o™the finite sct of
whole numbers in this interval. We arrive in $his way at the idea of a
collective with an infinite number of attribtes. In such cases the
classical books speak of geometrical p, bfﬁbﬂities, which are thus
contrasted with arithmetical ones, wltel8 the number of attribuies is
finite. We do not propose to questioh here the appropriateness of
these terms. However, in a casevlike the present one, in order to
desc_:ribe_ the d&ﬁ&?%}’ﬂﬂ%ﬂbl’-’&?ﬁw iway as before. one would need
an infinite set of fractions te\répresent the corresponding probabili-
ties, and to present such.a $et is obvicusly impossible, Uortunately,
the way of solving difficulties of this kind was discovered long ago,
and everybody whelhas some slight knowledec of analysis knows
how to proceed i\ case like this, 7
\,:.‘ PROBABILITY DENSITY
T explain how it is possible to describe distributions in which an
mﬁ@e"contmugm of attributes is involved, we may consider an
andlogous case in another field. kmagine that we have to distribate
along a straight line 1 metre long. As long
sists of a finite numb fPC'Hlt‘s remains finite, the distribution con-
continuously glon the ﬁwleveli e weight has to be d’Strl.‘DUted
form of a rod ofgnoﬁul‘:fo - ongin of the straigh linc, g, in the
Weight, We can no lon erlsomll( tl}lC!(ness, I metre long and of 1 1fg
the meaning of the e)% p.f_:a of sn}gle ’loaded pom@s. N‘_wcrthek:a.s,
Pression distribution of mass is quitc clear in

thl;.Gcase as well, For example, we say that more mass is concentrated
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in a certain element of length in the thicker part of the rod than in
an equal element in its thinner part, or that the mass density (mass
per unit length) is greater in the thicker and smaller in ihe thinner
part. Again, if the rod is uniformly thick, we speak of a uniform
distribution of mass. Generally speaking, the distribution is full des-
cribed by the indication of the mass density at each point of
the line.

It is casy to extend this concept 1o the case of hits on a target. To
each segment of distance between 0 and 100 cni there correspondsa
certain probability of finding a hit in it, and the distribution of these
hits is described by their density (number of hits per unit lengthyin
each part of the target. We take the liberty of introducing“a new
expression, ‘probability density’,? and state: If a collegfivecontains
only a finite number of attributes, with no contingos transition
between them, then its distribution consists of & dnite number of
probabilitics corresponding to thesc attributes. T RWowever, the attri-
butes are continuously variable quantitics. @@ distances from a
fixed point, the distribution is described by ‘function representing
the probability density per unit of letigth’ over the range of the
continuous variable. ™

Let us take again the case of shots\@t a target, Assuming that the
shots were fired blindly, we mayERp AR RARL O B S hots hitting
2 ring near the outer circumferciee of the target to be greater than
that of the shots hitting a,fkg nearer to the centre, because the
surface of the former is larger. We may thus expect the probability
density fo increase prokégtionally to the radius {or to some power of
the radius). \

We shall have gondeal later with certain problems arising from
the existence ofN\¢ollectives with continuously varying attributes;
we shall furffer discuss the generalization of this concept so
as to inclidg attributes that are continuous in more than onc
dimensiph} Le., densities on surfaces or volumes rather than on
lines. A% "this stage of our discussion we merely mention these
quefsig\ons in order to illustrate the notion of distribution, and
fe_jndicate its wide range. By using this concept, we can now
give a more precise formulation of the purpose of the theory of
probability.

From one or more well-defined collectives, a new collective is
derived (by methods which will be described in the following para-
graphs). The purpose of the theory of probability is to calculate the
distribution in the new collective from the known distribution (or
distributions) in the initial ones.
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THE FOUR FUNDAMENTAL QOPERATIONS

The above statement contains the concept of a ‘collective derived
from others’ and this requires closer consideration. How can a new
collective be derived from a given one? Unless the manner in which
such a derivation is madc is clearly explained, all that has been said
so far is in danger of becoming devoid of meaning. There are four,
and only four, ways of deriving a collective and all problems tregted
by the theory of probability can be reduced to 4 combination’ of
these four fundamental methods. Most practical problemgNiAyolve
the application, often a repeated one, of several fundamdtdl opera-
tions, We shall now consider each of them in turn. Ja\each of the
four cascs, our basic task 1s to compute Lhe new disybuiion in ternts
of the given ones, and 1 do not expect that thig .\\-\'il[‘give rise to any
great difficulty. The first two of the four fundangenial operations are
of surprising sirplicity, Some of you may everpthink that I am trying
to avoid the real mathematical difficulties ofthe theory of probability,
difficulties which you think are bound™b exist on account of the
large number of formule usual ly fouddhin textbooks. This is far from
my purpose. By saying that all_he operations by which dillerent
collectives are brought into muthal relation in the theory of proba-
bility can be redngesh toufoarelatiyety simple and casily explained
types, I do not suggest thalthere are no difficulties in the solution
of problerps which wemay encounter. Such difficultics arise from
the complicated combination of a great number of the four funda-
mental operations Remember that ] gebra, with all its deep and
Intricate problemts, is nothing but a developxﬁcnt of the four funda-
menta_l opetations of arithmetjc. Everyone who understands the
meaning oftaddition, subtraction, multiplication, and division hoids
the 1_(8}:’ da.all algebraic problems. But the correct use of this key
?equ;re\s..lopg training and great rental cffort. The same conditions
arefotind in the caleulus of probability. T do not plan to teach you
ures how (o solve problems which have occupied the
Bernonlli or a Laplace, as well as of many great mathe-
hand, nobody would willingly

;‘% zfigliizﬁ f}ﬂ;Wledge of the four fundamental operations of arith-
need £0 erfor ¢ wore free of a.ll mathematical ambition and had no
not 0111; fronﬂn;}f 1y mathematical work. This knowled ge is valuable,
educational valy y Eomt of view of practical utility, but also for its
tions of the th, N4 explam"_lg_ briefly the four fundamenta! opera-

oy of probability, 1 hiope to achieve the same two

cbiects: :
;egcts. o give you tools for solving occasionally a simple
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probability problem, and, what is more important, to give you some
understanding of what the theory of probability means; this is a
matter of interest to every educated person,

FIRST TUNDAMENTAL OPERATION; SELECTION

The first of the four fundamental operations by which a new
collective can be derived from one {or several) initial ones is called »
selection. Imagine, for instance, a collective consisting of all castd
made with a certain die, or of all games on a certain roulette table,
New collectives can be formed, for instance, by selecting the\first,
fourth, seventh . . . casts of the die, or the second, fourt];, é’ighth,
sixtcenth . . . games of roulette—generally speaking, by tife sélection
of elements occupying certain places in the total sequchce of the
original collective. The attributes in the pew coli€diiyé remain the
same as in the original one, namely, the number of\points on the die,
or the colours ‘red’ or ‘black’ in roulette, Werale interested in the
probabilities in the new collective, e.g., the pn'qliabﬂities of ‘red’ and
‘black’ in a selection of roulette games condisting only of games the
order-numbers of which are, say, powers of 2 in the original sequence.
According to an earlier statement cong m:ir}w the properties of col-

- e . aulfhrary org.in .o
lectives, especially their ran]donlﬁéﬁﬁﬁ%‘gﬁer- TSWer ?g this qucstion is
obvious: the probabilitics remaid unchanged by the transition from
the initial collective to the pew one formed by selection. The six
probabilities of the numbefs™ to & are the same in the selected
sequence of games of d'g!e\%s’thcy were in the original one. This, and
nothing more, is theyméshing of the condition of randomness im-
posed on all collectivas. The wholc operation is so simple that it
hardly requires gnyfurther explanation. We therefore proceed im-
mediately to thgfellowing exact formulation:

From a gi¥en collective, many new ones can be formed by selec-
tions of x&%ﬁus kinds. The selected colfective is a partial sequence
derivedefiom the complete sequence by the operation of place
selectivp. The attributes in the selected collective are the same as in
thg original one. The distribution within the new collective is the
samie as in the original oue.

SECOND FUNDAMENTAL OPERATION MIXING

The second method of formation of a new collective from a given
one is scarcely more complicated : this is the operation called mixing.
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First, let us consider an example: take the same game of dice as in
the previous example, the elements of the collcctive being the con-
secutive casts, and the attributes, the six diffcrent possible results.
The following question can be asked: What iy the probability of
casting an even number? The answer is well known, Of the six
numbers 1 to 6, three are even ones, 2, 4. and 6. The probability of
an even number is the sum of the probabililies of these three results.
I hardly expect anyone to doubt the correctness of this solution; it
is also easy to deduce it by means of the definition of probabilif¥.as
the limiting value of relative frequency. The general principle under-
lying the operation is easily recognizable. We have constr ugted)a new
collective consisting of the same elements as before, bl with new
attributes. Instead of the six former attributes 1 to fywbve have now
two new ones, ‘cven’ and ‘odd’. The essential paintis that scveral
original attributes are covered by a single mewA\oOne. It would be
different if an original attribute were replaced\by several new ones,
for this would make the calculation of thc,@w probabilities from the
initial ones impossible. The term “mixing?# chosen to connote that
several original attributes are now sixed together to form a single
new attribute. We can also say thafuhixing is performed on several

elements differing originally by, their attributes, but now forming a
unit in the new collective. &y
www.dbraulibrary org.in

INEXACT s*m\fBMENT OF THE ADDITION RULE

Perhaps some %ﬁzﬁu will remember from school days references
to the probability\of ‘either-or’ and the following propoesition con-
cerning the calctiation of unknown probabilities from known ones:
The probahility of casting either 2 or 4 or 6 is equal to the sum of
the proba@}lﬂm& of each of these results separately. This statement is,
howeye.g;_ Inexact; it remains incomplete even if we say that only
prgl{ 111t1e9: pf mutually exclusive events can be added in this way.
The probability of dying. in the interval between one’s fortieth and
15, say, 0.011, and that of marrying between
the forty-first and the forty-sej::ond birthdays 0.009, Th%z t\g&-‘o events
are lpumagly exclusive; nevertheless we cannot say that a man
entering his forty-first year has the chance 0.011 - 0.009 = 0.020

fei ingi !
?heelt%?;\gj?glgyifw course of this year or marrying in the course of

The f:lariﬁcation and the en:
operation car only be achiev
the collective, The difference
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addition rule and the incorrect one follows from the principle that
only such probabilities can be added as are attached to different
attributes in one and the same collective. The operation consists in
mixing only attributes of this kind. In the above example, however,
the {wo probabilities helonged to two different collectives. The first
collective was that of all men aged forty, and the two atiributes were
the occurrence and nonoccurrence of death in the course of the
forty-first year of age. The second collcetive was formed of men who
have attained their forty-first year, and who were divided into groups/
characterized by the occurrence or nonoccurrence of the event of
marriage in the course of the following year, Both collectives(aré
simple alternatives. The only possible mixing operation in gach 6f
them is the addition of the two probabilitics, of life and death; or of
marrying and remaining single--giving in each case thegym 1. It is
not permissible to mix together attributes belonging t¢ two different
collectives. Vo

Another example which shows clearly the insuffi¢iency of the usnal
‘either-or’ proposition follows: Consider a gd&'tennis player. He
may have 807; probability of winning in.a’certain tournament in
london. His chance of winning anothert0urnament in New York,
beginning on the same day, may be 709,."The possibility of playing
in both tournaments is ruled out, henhee, the events are mutually ex-
clusive, but it is obviously nonse He$¥o XA BHY SE8BAbility of his
winning either in London or miNew York is 0.80 + 0.70 = 1.50.
In this case again, the explanation of the paradox lies in the fact that
the two probabilities referpo two different collectives, whereas the
addition of probabilities\is only allowed within a single collective.

\¥/

O
A very\s;pécial case of mixing which occurs often is sometimes
given the Hfrst place in the presentation of the theory of probability;
it is.gwen assumed that it forms the basis of every calculation of
probabilities, We have previously asked: What is the probability of
casting an even number of points with a die? The general solution
of this problem does not depend on the special values of the proba-
bilities involved, ie., those of the results, 2, 4, 6. The die may be an
unbiased one, with all six probabilities equal to 1f6; the sum is in
this case 1/6 - 1/6 & 1/6 = 1/2. The die may, however, be one of
the biased ones, such as we have already used several times, and the
six probabilities may be different from 1f6. The rule, according to
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which the probability of an even number of points is equal to the
sum of the probabilities of the three possible even numbers, remains
valid in either case. The special case which we are now going to con-
sider is that first mentioned, i.e., that of the unbiased die, or, as we
are going to call it, the case of the ‘uniform’ distribution of proba-
bilities.

In this case a correct result may be obtained in a way slightly
different from the one we have used before. We begin with the fact
that six different results of a cast are possible and each of them o
equally likely. We now use a slightly modificd method of reasonirg?
we point out that, out of the six possible results, three are ‘favoptahble’
to our purpose (which is to cast an cven number) and ¢figee “are
‘unfavourable’. The probability of an even number, that’is,}:,"'ﬁ — 12,
is equal to the ratio of the number of favourable resulid\to the total
aumber of possible vesults. This is obviously a speefal case of a
general rule, applicable to cases in which alllaftributes in the
nitial collective have cqual probubilities. W may assume, for ii-
stance, that the number of possible attrib(ies in #, and that the
probability of the occurrence of each pmhem 15 1/ Assuming
further that m among the # attributes are*mixed together to form a
new one, we find, by means of the addiition rule, that the probability
of the new attribute (in the new celettive) is a sum of 7 lerms, each
equal to 1/n. M3 "&%‘f&%ﬁ%"(ﬁi‘%&bility is min, or cqual to the
ratio of the number of favoutable attributes to the total number of
different original attribulgs, Later, we shall show how this rule has
been misused to serye, 45 basis for an apparent definition of prob-
ability. For the timé\being we shall be satisfied with having clearly
stated that the determination of probabilities by counting the
number of equally probable, favourable and unfavourable, cascs is
merely_ a Very. Special case of the derivation by mixing of a new
collectiveAtoih one initially given, i °

I ha.%already made use of this special form of the mixing rule in
my‘ﬁ.?gt lecture, without explicit mention. We spoke there of two

mi‘i@?ﬁ:"g:;fgg: il}tlamentfi were the consecutive draws in a lottery.

¢ hubess of o ’lotte attributes considered were all the different
ending with five 0's ery UEKC'ES; in the second case, the numb‘crs
with five 0's oxict betwere Orjackel,ed togc?her. Ten ngmbcrg ending
abilities, with the o, l?frielz_ and one million. By adding Lheir prob-
ties in the initial collectP 1on F’f a uniform distribution of probabili-
number ending with ﬁ\lave’{]s“ e found the probability ol drawing a
0.00001. ¢ Us to be equal to 10 in a million, oF
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SUMMARY OF THE MIXING RULE

I will now briefly formulate the mixing rule, as derived from the
concept of a collective,

Starting with an initial collective possessing more than two attri-
butes, many different new collectives can be derived by ‘mixing’; the
elements of the new collective are the same as those of the old one,
their attributes are “mixtures’ of those of the initial collective, e.g.,
all odd numbers or all even numbers, rather than the individualy
numbers, 1, 2, 3, . . . The distribution in the new collective is ab-
tained from the given distribution in the initial collective by summing
the probabilities of all those original aitributes which are{Tyixed
together to form a single attribute in the new collective. .\ «

The practical application of this rule has already begn\illustrated
by simple examples. T would mention in passing that thiSTule can be
extended to include collectives, of the kind previouslwdiscussed, that
have a continuous range of attributes. Higher mathematics teaches us
that, in a case of this kind, addition of probabiliti€s is replaced by an
operation calicd integration, which is analggous to addition but less
easily explained, Remember, for instance\the example of shooting
at a larget. Let us assumc that the probability density is known for
all distances from the centre of thc;”tavl'j%[et. The probability of a hit
somewhere between 0.5 m and Iﬁi‘"f‘f’om THe' 2enit é?lg.‘%.lf] in the outer
half of the target, can be calculated by a mixing operation, involving
the integration of the densigy function between the limits 0.5 m to
1.0 m3. These inclicatious“ah‘e sufficient for those who are familiar
with the fundamental 8ghcepts of analysis. Others may be sure that,
aithough these genetalizations are undoubtedly necessary for the
solution of many(problems, they are irrelevant from the point of
view of those gsr;eral principles which are our only concern in these
lectures. ¢

N
JMBHIRD FUNDAMENTAL OPERATION: PARTITION
A
(Afeer having considered the first two operations by which a new
cOlective can be derived, those of selection and of mixing, we now
turn {o the third one, which I call partition. The choice of this term
will soon be clear to you; the word suggests a certain analogy to the
arithmetical term ‘division’, the operation in guestion being in fact
a ‘division of probabilities’. To help you understand this third opera-
tion, I shall start with the same collective which served for the
explanation of the first two operations, namely that formed by a
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series of throws of a die from a dice-box. The six attributes ave again
the numbers of points appearing on the top side of the die. The
corresponding six probabilities have the sum 1, without being neces-
sarily equal to 1/6 each, The new problem which we arc going to
discuss now and to solve by means of the operation which we call
partition is the following; What is the probabili ty that a result which
we already know to be an even number will be equal to 27 This
question may appear somewhat artificial, but it can casily be giveQa
form which is often met iu real life.

Imagine that you are standing at a bus stop where six, different
lines pass by. Three of them are served by double-deckeg-buses and
three by single-decked buses. The first ones may bearithe’ numbers
2,4, 6; the second ones, the numbers 1, 3, 5. When a fua approaches
the stop, we recognize from afar 1o which of the’two groups it
belongs. Assuming that it has a double deck, WEat s the probability
of its belonging to line No. 22 To solve this problen. we must of
course know the six original probabilitieyQr, practically speaking,
the relative frequencies) of the six seryides: Assyming that they are
all equally frequent, and that the propubilities are therefore all equal
to 1/6 (thus corresponding to the Pase of an unbiased die), the
answer is easy: the probability ¢fa’ double-decked bus being No. 2
18 1/3. One of the arguments b:}f which we can arrive at this result is
as follows: Tﬁé&“e%@‘ﬁﬁ%‘t??ﬂﬁ%%ﬂﬁf%quaﬂy probable possibilities;
only one of them is a fa%ourable one; its probability is, therefore,
accordiug to a rule qudted previously, equal to 1/3. This method of
Calcu;allon is, ho gyer, not always applicable; it cannot be used if
t}_Je 8ix bus lings Rass the stop with different frequencies, or if the six
mdes_of the dig\bave different probabilities. We arrive at a general
soiution and\gt’y general statement of the problem by inguiring into
the natuge“sf the new derived collective. We are by now sufficiently
aocustp‘ed to the idea that the expression ‘probability of an event’
hasg 511 exact meaning unless the collective in which this event is to
be-eonsidered has been precisely defined,
city, let us return to the example of the die.
ve may be described as follows. It is formed
collective but not of all jts clements. In fact,
asts of the dic which are distinguished by
bute ‘even number of dots’. The attributes
! ve are the same as in the initial collective,
;;alt?lzbirﬁjtl;;]n;z?}[:c;i S;ls on the upper side of the die’, but, whereas
! . .- Hiere were six different attributes 1,2, . . ., 6,
1 the derived collective there s mat Vo

v Tere are only three, 2, 4, and 6. We say that
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the new collective resulted from a partition into lwo categories of
the elements of the original collective. One of them, the ¢lements of
which are distinguished by the common attribute ‘even number’,
forms the derived collective. It is important to realize that this parti-
tion is something quite different from the place selection which we
have discussed before. The latter consists in selecting certain cle-
ments out of the initial collective, according to a rule, ignoring the
attributes while specifying the order numbers of the elements to be
selected for the new collective. We have scen that the probabilities
ina collective obtained in this way are the same as in the original one.
On the other hand, when dealing with partition, the decision whethew
a given element is to be selected to take part in the derived colleetive
is specifically based on what its attribute is. As a result, thé, proba-
bilities within the derived collective are essentially diff¢vent from
those within the original one and the manner of their ¢ahge is the
subject of the following scetion, )
AN
PROBABILITIES AYTER PAg{IﬁON

Let us assume that the probabilities of the six possible results (1 to
6 points) in the original collcetive are 0,10,°0.20, 0.15, 0.25, 0.10, and
0.20 respectively, their sum being 1.¢Fis upimportant whether we
think of the game of dice, or the v/ BREELYTHE Wy in which
the six probabilities have been detived is equally irrclevant. We now
add together the probabilities{df all even numbers, i.e., the fractions
0.20, 0.25, and 0.20; this‘ gi?&s the sum 0.65 as the probability for
the occurrence of any oa&of the even numbers (second fundamental
problem, mixing, solyed by the addition rule). According to our con-
cept of probabilitysthe frequency of ‘even’ results in a sufficiently
long sequence offobservations, is equal to 65 %. About 6500 elements
amang the first 10,000 observed have even numbers as their attributes.
About 2000.6f them have the attribute 2, since 0.20 is the frequency
of this Qattﬁbute. We are now going to form a new collective by
exclqdiné’ from the initial one all elements whose attributes are odd
nugmbers. Among the first 6500 elements of the new collective, we
fitd,2000 elements with the attribute 2; the relative frequency of this
attribute is therefore 2000/6500 = 0.308. Since the calculation which
we have just carricd out is, strictly speaking, only valid for an
infinitely long sequence of observations, the result which we have
obtained, the fraction 0.308, represents already the limiting value of
the relative frequency of the attribute 2 in the new collective; in
other words, 0,308 is the probability of this attribute. The general
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rule for the solution of problems of this kind is now easily deduced
from this special case. The first step is 1o form the sum of the given
probabilities of all those attributes which are to be retained in the
pattition, i.e., the 2’s, 4's, and 6's in our example, The next step is to
divide by this sum the probability of the attribute about which we are
inquiring (2 in the chosen example); (.26/0.65 = 0.308. The pro-
cedure is in fact that of a division of probabilitjes.

QY
INITIAL AND FINAL PROBABILITY OF AN ATTRIBUTY

It is useful to introduce distinct names for the two probabilities of
the same attribute, the given probability in the initial collgetive and
the caleulated one in the new collective formed by partition, The
current expressions for these two probabilities aré\hot very satis-
factory, although I cannot deny that they arg.dmpressive enough.
The usual way is to call the probability in thednitial colleciive the a
priori, and that in the derived collective thex@yposterior probability.
The fact that these expressions suggest @ connexion with a well-
known philosophical terminology is tlleir\ﬂ1‘st deficiency in my eyes.
Another one is that these same exprdssions, « priori and a posteriori,
are used in the classical theory ofprobability in a different sense as
well, namely, to distinguish between probabilities derived from em-
pirical data andzthdbeaaééhm5d -Hif-the basis of some hypothesis;
such a distinction is not pertient in our theory. 1 prefer, therefore, to
give to the two prob%“bilities in question less pretentious names,
\yi;u_ch have less far-rézp ing and general associations, T will speak of
nitial probability #0d final probability, meaning by the first term the
pmbab}]}ty I the origina] collective, and by the second one, the
Qr_obablhty (aFthe same attribute) in the collective derived by par-
tition. In %gr‘numerical example the attribute 2 (two points on the
die, o7 the.bus line 2), has the initial probability 0.20, and the final
probability 0.20/0.65 = 0.308. This means simply that this attribute
has i probability 0.20 of being : >
thesequence, and the probabilit o

THE SO-CALLED PROBARILITY OF CAUSES

Another expression which | c
I find equally misleading and ¢
with the problem of partition,
that treated in the preceding p

46 aragraphs, i.e., the probability of the
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mumber 2 among the even numbers 2, 4, and 6, it is often argued
that the appearance of an even number may have three different
‘tauses’, or can be explained by three different “hypotheses’. The
possible ‘causes’ ov ‘hypotheses’ are nothing else but the appearance
of one of the three numbers 2, 4, 6. The above-caleulated final prob-
ability 0.308 is correspondingly described as the probability of the
appearance of an even number being ‘caused’ by the number 2. In
this way an apparently quite new and special chapter of probability
calculus is opened, dealing with the ‘probability of causes’ or thg
‘probability of hypotheses’, instead of the usual ‘probabilitysof
events’. The partition problem is usually presented in this thearydn
the following form: «
Three urns, filled with black and white balls, are plaged ‘on the
table. We consider an initial collective, cach elementof which is
composed of two separate observations. The firs{.gbservation con-
sists in selecting at random one of the three uddsand stating its
number, 1, 2, or 3. The second observation cons{t_u;s in drawing a ball
out of the urn previously selected and in noting/its colour. Thus the
attribute of each single element of the initfal ¢ollective consists of the
colour of the ball drawn and the numhehof the urn from which this
ball was drawn. Clearly, there are sixidifferent attributes within the
original collective, namely, white ahd ;I 0, l,l‘Yg]gjt_e and No. 2, white
and No. 3, black and No. 1, ete X Ehe correiponding $ik Probabilities
are given. Now assume thatdn a particular casc the ball drawn was
white, while the number of\the urn from which it was drawn is un-
known. In that case we shay wish to calculate the probability that the
ball was drawn fromoure No. 1 or, in other words, that the appear-
ance of & whiic ballwas due to the cause that the urn selected was
that bearing NoN#</The solution is exactly along the same lines as
before: The injtial probability of the attribute “white and No. 1" has to
be di\»‘ide(%gthe sum of the probabilities of the three attributes, white
and No.ly white and No. 2, and white and No. 3. The usual meta-
physicaliformulation of this problem can only be explained histori-
cgll{.\The partition rule was first derived by Thomas Bayes,! in the
fuiddle of the eighteenth century, and his original formulation has
sifice been reprinted in most textbooks practically without alteration.

FORMULATION OF THE RULE OF PARTITION

At this stage T should Like to state definitely that in our theory no
difference whatsocver exists between the ‘probability of causes’ (or
“probability of hypotheses’) and the more usual ‘probability of
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events’. Our only subject is collectives, ie., sequences of observa-
tional data with various attributes obeying the two laws of the
existence of limiting values of relative frequencies and randomness.
In every collective possessing more than two distinct attributes, a
partition can be carried out. After this, each of the attributes appear-
ing both in the initial and in the derived coliectives has (wo proba-
bilities—the initial one, i.e., that in the original collective, and the
final one, ie., that in the collective derived by partition. There issno
place in this problem for any metaphysical formulation.

Before considering the fourth and last of the fundamentd] ppera-
tions, T want to summarize bricfly the definition of the parltition
opetation, and the solution of the partition problem: \ .

If a collective involves more than two attributes, hén, by means of
a “partition’, a new collective may be derived fro it the following
way. O

Consider the set of attributes of the initial'CoNective and choose a
certain group of them; pick out from the initeal collective all elements
whose attributes belong to the chosen gtoup. The selceted elements,
with their attributes unchanged, willfgrin a new collective.

The distribution within this ney collective is obtained by dividing
each initial probability of a selested attribute by the sum of the
probabilities of all selected attributes.

www.dbraulibrany .org.in

FOURTH FUND{\.B(ENTAL OPERATION: COMBINATION

+8 3

.The three fundamental operations described so far—selection,
mixing, and partition—have one thing in common. In each of them
a new collective'was derived from one original collective by applying
a certain gs']@(\:edure to its elements and attributes. The fourth and
last Operanton, which we are now going to consider, is characterized

by tl}?\fad that a new collective is formed from rwe original ones.
Diing the discussion of this operation, we shall at the same time
£ain a first msight into the different forms of relations between two
fourth operation conthination. The
ain this operation will be,
examples of the game of
two series of casts: the
to 6. The corresponding
are not necessarily identical
The Anal collective consists of a
f both dice, and the attributes are
numbers on both dice. For example,

as far as possible, similar o CUr previous
dlce_. The two initial collectives are now
attributes are in both cases the numbers 1
tWo sets of six probabilities each, which
sets, are assumed to he known,
Sequence of simultaneous casts o
the possible combinations of the
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we ask for the probability of the resuit ‘3 on the first die and 5 on
the second die’. We consider the two dice in this problem to be
distinguished by being marked with the figures 1 and II or having
different colours, or other distinctive marks.

Those among you who have learned the elements of the theory of
probability at school or have given thought to this problem, know
how it can be solved in a primitive way. You will say that it is the
question of a probability of ‘this as well as that’, and the rule is the
multiplication of probabilities. Tf, say, the probability of casting 3
with the first die is 1/7, and that of casting 5 with the second dic is¢
1/6, the probability of casting 3 and 5 with both dicc is 1/7 x 1/6,=
1/42. This becomes obvious if one thinks that only 1/7 of allCasts
with the first die are to be taken into consideration, and that in' 1/6
of these selected casts the second die is expected to show thexumber 5.

Cleasly, however, this rule requires exact statement and feundation
before its general validity can be accepted—a clagification of the
same type as was previously given for the addition shle of the proba-
bility of “either-or’. The probability of casting wifh'two dice the sum
& as well as the difference 2 is, for instance, s@f‘e y not equal to the
product of the two corresponding singiesprobabilities. I shall now
consider these finer points, and, in ordef't8 be able to present this
investigation in a more concise formgX shall use a few simple alge-
braic symbols. I do not think thag¥Hbreillibrake ehese arguments
too difficult to follow. N\

~

A NEW METHOD QEEORMING PARTIAL SEQUENCES:
C }Q@FILATED SAMPLING

We consider a gathe in which two dice are cast. The method of
casting is irrclevahf; the dice may be cast from two boxes or from
ong common oy simultancously or consecutively. The only essen-
tial point is~the possibility of establishing a one-to-one correspon-
dence betgcen the casts of die I and those of die IL. We consider first
only the yesults obtained with die I. Ameong the first # of them therc
will Bea certain number, say ry, of casts in which 3 is the number of
points that appeared on the face of the die. The ratio myfn is the
relative frequency of the result 3 in casting die I; the limiting value
of this fraction ,/n is the probability of casting 3 with this die.

Now we go a step further: Bach time that dic T has produced the
result 3, we note the result of the corresponding cast of die I. This
second die will likewise produce the results { to 6, in irregular alter-
nation. A certain number of them, say #'z, will show the result 5.
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The relative frequency of the result 5 for the second die (in these
selected casts) is thus n'/n;. As we consider now only a partial
sequence, derived from the complete sequence of all casts by means
of the condition that the corresponding cast of dic T should have the
result 3, the relative frequency n'y/n, is not necessarily equal to
the frequency of 5 in the collective composed of all casts with
the second die.

This kind of selection of a partial sequence of the elements of a
collective is new to us. The process is different both from Placesselec-
tion, where the elements are selected by means of a pre-es}ablishcd
arithmetical rule, independent of their attributes, and f rogi\partition,
in which the elements selected are those possessing a cextigh Specified
attribute. We need therefore a special term to denot'a.tlﬁé new opera-
tion, and we use for this purpose the expression gapreluted sampling,
or sampling for short, We will say, for instafcé/ that the second
collective was sampled by means of the firsCede, or, more exactly,
by the appearance of the attribute 3 in {he first collective, In this
connexion it will be convenient to usg the”expressions the sampled
collective and the sampling collectizes The procedure may then be
described as follows: We start by;eéta’blishjng a one-to-o¥¢ COrres-
pondence between the elements of the collective 10 be sampled and
those of the sampling coliective. This is done in our example by
casting thCJWQfﬁiSiﬁ‘aﬁllﬂh;iﬁgl&Sﬁ'gnnltaneously. Next, we choose an
atiribute of the sampling.gallective (here the 3 of dic 1) and select
those elements of the sdmpled collective which correspond to elements
of the sampling co]{ebtivc bearing the chosen atiribute. Tn the above
example, the fi t(ﬂie may be used in 6 different ways to sample the

casts wilh the sécond die, uamely, by means of the attribute I,

attribute 2,5\ ete,

A S
(D"
(Y MUTUALLY INDEPENDENT COLLECTIVES

R ;%ﬁ: ratio #';/ng, which we considered in the preceding paragraph,
A\ the relative frequency of the result 5 in the collective 11 which i
~O lgampled by means of the attribute 3 of the sampling collective 1. So
{4) :?’a ::i 310 E(l)t knm_v the: numerical value of this ratio. We are going
o Obser‘; : at by mdei}mte:ly Increasing the length of the sequence
o ions, j[tl;le fatio #'cfny tends to a limiting value. But what
e reiativls fpossx le that this value is equal to the Jimiting value of
et '© Irequency of the attribute 5 in the complete sequence of
Sts carried out with die 11, ‘Posgible’, 1 say, but not certain, since

this does not follow from anything we have learned so far. Let US
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assume for the moment, that it is so. This assumption is simple to
understand; it implies that the effect of sampling a partial sequence
out of the elements of collective [T is similar to that of a place sclec-
tion, causing no change in probabilities at all, Is there, in fact, any
ground for suspecting that the chance of casting 5 with die 11 may
be influenced by the fact that we reject all casts in which die [ did
not show 3 points? A sceptic may answer: ‘Perhaps! It all depends
on whether or not the casts of die II arc independent of those of die

[ But what does the word ‘independent’ mean in this connexion? ¢

We can casily indicate conditions under which two collectives are
certainly not independent. Two dice tied (ogether by a short thread
cannot be expected to produce two sequences of independent fesults,
However, to obtain a definition of independence, we musg.geturn to
the method that we have already used in defining the, cbneepls
‘collective’ and “probability”. Tt consists in choosing taf“property of
the phenomenon which promises to be the mostudeful one for the
development of the theory, and postulating Ui property as the
fundamental characteristic of the concept wilieh we are going (o
define. Accordingly, subject (o a slight addition”lo be made later on,
we now give the following defirition: Asegticctive 11 will be said to
be independent of another collective J 3 the process of sampling
from collective It by means of collcaiuc [, using uny of its attributes.
does not change the probabilili’os‘i’é‘f“i-}ib‘.ﬁ‘ﬁlﬁ?ﬁ?&yt‘?!"%éﬂcctivc 11,
or, in other words, it the dissaibution within any ol the sampled
collectives remains the samgd@y that in the original cotlective 11,

If we now assume thatite two dice in the above example are
independent in the megfing of the word just given, then our problem
of finding the proBability of the combined atiribute (3, 5) can be
solved readily. _ W

N\
D‘F..QI,\R'I'ION OF THE MULTIPLICATION RULE

We h‘c&&“considercd altogether # casts of two dice and we have
found, $hat in n, of them the first dic showed the altribute 3. Again,
ameig those n, casts there were ', such casts in which the second
die™ad ihe attribute 5. Hence the total number of cusis bearing the

mbined atrribute 3 and 5 was #'s. The relative frequency of this
attribute is thercfore »';/n and the limit of this ratio is just the proba-
bility we are looking for. Everybody familiar with the use of mathe-
matical symbaols will understand the equation:

.
g My g

’ iy "

51



_(¥hat follows we spea
) Tespect to collective 1,

'

PROBABILITY, STATISTICS AND TRUTH

In other words, the relative frequeney n'y/n is the product of the
two relative {requencies #'yfn, and ayfn, both of which we have con-
sidered previously, The limiting value of the sccond of them is the
probability of a cast 3 with the first dic; we denole it by py. According
to our assumption of independence of the two dice, the ratio #',fn,
has the same limiting value as the relative frequency of 5 in the
complete scquence of casts of die I1; in other words, its limiting value
is the probability of casting 5 with the second die, Let us denote the
probabilities corresponding to die I by the leiter ¢, e.g., the prgba-
bility of casting 5 by g;. According to a mathematicai rule,Mhe
limiting value of a product is equal to the product of the Yiiting
values of the two factors; the limiting value of n'yin i)thus the
product p; X g5 In words: the probability of castin gsuniltaneously
3 with the first die and 5 with the sccond die is (h@ yproduct of the
probabilities of the two separate events. Usin gaheNclter £ to denote
the probabilities in the game with the two died’ we can write the
following formula: Y

Pas = Py Xgan

Analogous formulz will be valid 'féf, all other combinations of two
nl_m}:b;_rs,Ifro? L1 to 6,6. For ingtance, the probability of casting 5
with die I and 3 with die [1is ®3, = p, % . where p, denotes the
probability oF’Eﬁ%’tH@'%‘%P@?‘&?eafsﬁ “c]é?lect?:ﬁé L and io on.

We have introduced and Used the definition of independence of
coliective I with respecf to collective T by postulating that the process
of sampling from,\Ié;b)‘f meuns of I should not change the original
probabilities in IL However, we have to add that the rindependﬁ?nce’
thus defined is, actuaily a reciprocal property; in other words, if JI
is m{lependem of I, then 1 is also independent of Tf. They are mutu-
ally independent. This follows from our last formuly fo 1'JP-‘ 5. where
the twopfebabilities p, and g5 play exactly the same role. The same
AaTgumeILl can be repeated, starting now with collective 1T and
sampling from I by means of the attribute of II, etc. Whenever in
l$ of the independence of collective 11 with
it is with the understanding that the roles of

I and IT might also be interchanged.

To state the multiplication rul iliti i
>ale d e of probabilitics wendent
collectives in accordan propabulitics for fndep

oo 1 ce with the general principles of our thzory,

¢ more addition must be made. We must be sure that the new
sequence of elemen_ts formed by the game of two dice. with two
numbers as a combined attribute, is a collective in the sense of our

definition, Otherwise, no cleay meaning would be conveyed Dy
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speaking of the probability of the result 3,5. The first criterion—the
existence of limiting values—is obviously satisfied, since we have
been able to show how these limiting values (P, 5 or any other of the
thirty-six values from P, ; to Pg ) can be calculated. We must now
investigate the question of the insensitivity of the limiting values to
place selection. To be able to prove the insensitivity we are in facl
obliged to add a certain restriction to our previous delinition of inde-
pendence. We must require cxpressly that the values of the limiting
frequencies in collective 11 shall remain unchanged when we firsp™\
make an arbitrary place selection in collective T and then use this
sclected partial sequence of collective T for sampling collective 1,
The actval need to impose this condition will be illustrated lat€ryby an
example, A\

To conclude this seciion we give a summary concernilg the com-
bination of independent collectives. RS

i. We say that collective IT is independent of Sellective I if the
distribution in TT remains unchanged by the operation which consists
of first, an arbitrary place selection in I, thefha”sampling of I by
means of some attribuic in the selccted past of I, and finally an
arbitrary place selection in the sampled part of IL.

2. From two independent collectives, of this kind, & new collective
can be formed by the process of ‘com ’ii_latf, n, _i‘e.,_b;lz considering
simultaneously both the clemeRf¥HHE He TAREOE o the two
initial collectives. "

The resuli of this operation is that the distribution in the new
collective is obtained by‘m}:ltiplying the probabilities of the single
attributes in the two injtial collectives.

ZWC/TEST OF INDEPENDENCE

We have, thas defined the fourth and last method of forming new
co]lectiveS\’We have merely to add a few words concerning the
combindion of nonindependent collectives, Before doing this, I will
inserpaitother short remark.

- Iathe same sceptical spirit in which we have discussed the coneept
of probability, we may now ask: How do we know that truly inde-
pendent collectives exist, i.c., those where the multiplication rule
applies? The answer is that we take our conviction from the same
source as previously, namely, from experience. As always in the
exaclt sciences, when conchisions are drawn from abstract and
idealized assumpiions, the test of the value of these idealizations is
the confirmation of these conchisions by experiment. The definition
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of an elastic body in mechanics states that at all points of such a
body, strain and stress determine each other uniquely. Tf we assume
that such bodies exist, mechanics teaches us, for instance, how to
calculate the deformation by a given load of a girder made of elastic
material. How do we know that a particular girder is in fact elastic
(in the sense of the above definition), and that therefore the results of
the theoretical calculalion apply to it? Is it possible to measure the
rates of strain and stress at each point of the girder? Obviously not.
What we have to do is to assume that the definition applies, calotflate
the deformation of the girder according 1o the theory, and #egh our
result by means of an experiment. If satisfactory agreemenfiBetveen
theory und experiment is obtained, we consider the premuses of the
calculation to be correct, not only for the one girder{dested. but for
all girders {or other objects) made of the same mafetial.

Another and still simpler example is this;"(\}eonmr_\- teaches
different propositions concerning the propertigsef a sphere. How do
we know that these propositions apply tothe carth? ias anybody
ever confirmed by direct measurement th& existence within the earth
of a point equidistant from all pointsien its surface (this being the
geometric criterion of sphevical shape)? Surely not. To assume the
spherical shape of the earth was<i8t an intuilion, This assumption
was afterwards confirmed by chieking a great number of conclusions
drawn from wvagwidbr e iR ALl Finally, slight discrepanecies
between the theoretical predictions and the experimental results were
detected and showed thufMthe sphere is only a first approxination to
the true shape of th¢ earth.

Exactly the same tonditions are encountered in the case of indepen-
dent collectives, \IPtwo dice are connected by a short thread, nobody
vy.lll assumetutual independence of the two corresponding collec-
tives, Tf Ehe_\{hrcad is somewhat longer, the answer is lcss obvious, and
the bﬁt“fh‘lpg_to do is to postpone judgrient untif a sufficiently long
sequenge ot_tnal:s has been carried out and the multiplication rule has
bee tested in this way. if the dice are put into the box singly, without

g them, long-standing and widc expericnce has
kind Tf oo t[valldlty qf the multiplication rule in cascs of this
Fom separate bores perps s (1707 DY w0 Giflrent persons
tion of inds endensc’: Pel;" aps even in two distant places. the assump-
Qutcome of a still more gevene) p LY SErtnty, which is 2
case, however, the 001‘reg§tne]a hil‘lman o ience. n each conere®
can be confirmed vt aI:eSf of the assumption of independence
long sequence of b}’ )" test, namely, t_)ycarrymg out a sufh_cnently

. q O observations of the dice under consideration, of
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of another system considered to be equivalent 1o the one in which
we are interested. The results of this test are compared with the pre-
dictions deduced from the assumption of the multiplication rule, and
the collectives are considered as independent if agrecrient between
theory and experiment is found.

The mutual independence of two collectives can often be deduced
directly from their definition. This is irue when both collectives are
derived in a certain way from a common original collective. Examples
of this kind will be discussed later when we deal with the repeated usg
of the four fundamental operations, e

COMBINATION OF DEPENDENT COLLECTIVES, .

To conclude this discussion, T shall briefly describe, Bdw the com-
bination of twa collectives operates in cases, in whigh the conditions
of independence arc not completely satisfied. WeNdo¥ot mean cases
m which no condition whatsoever is imposgdion the two collec-
lives; far from it. It is only a matter of aglight relaxation in the
condition of independence. We shall say#h3t two collectives 4 and
8 are combinuble but interdependent if theXfollowing relation exists:
We start, as before, with an arbiteargpluce selection in 4. Next we
use, as before, some attribute w{l;};ﬁq,ﬂﬁ;ﬁ%%ggggnce in order
lo sample a partial sequence of 8In contrast to the previous defini-
tion of independence, we assume mow that the distribution of proba-
bilities in the sampled parlighsequence of B depends on the attribute
m A that was used forgfhe sampling. Here is a concrete example:
The dice 4 and B are cast simultaneously, The probability of obtain-
g 5 with B, if we 8eunt only those casts where 4 has given the
result 3, has a dpfidgite value, This value is, however, now assumed to
be different fromthe probability of obtaining 5 with B if the sampling
is made by wteans of the result 4 for 4, The following is an illustration.

Three\lﬁaék balls and three white balls are placed in an urn. We
draw %0 balls consecutively, without putting the first ball back
beforedrawing the second one. The two balls are then replaced and
@ewhole procedure is repeated, The first of the two collectives under
cofsideration is that composed of all the ‘first’ draws, i.e., draws
made from the urn containing six bails; the probability of a white
ball in this collective is 1/2, if the distribution in the urn is uniform.
The second collective consists of all “second’ draws, out of the urn
containing only five balls. This second collective can be sampled by
means of the first one. Two partial sequences of elements are ob-
tained in this way; the first contains all second draws following the
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drawing of a while ball, and the second contains all secomd draws
following the drawing of a black ball. The probability of drawing
black is 3/5 in the first of these two new collectives, and only 2/5 in
the second one. This follows from the fact that in the fivst case all
three black balls remained in the urn after the first ball had been
drawn, whereas in the second case, the number of black balls left
after the first draw was only two. The distribution of probabilities in
the sampled collectives depends in this case on the attribute ofithe
first collective used for the sampling. It can casiy be scen howhsthe
final distribution can be calculated in such a case of combipgBbls, but
not independent, collectives. To obtain, e.g., the probapillty“of the
sequence black ball-white ball, onc must m ultiply the foltdwing two
factors: the probability 1/2 of a first black batl and&ha probability
of a second ball being white calculated under tieddssumption that
the first one was black. This last probability is-3(3} the result is there-
fore 1/2 x 3/5 = 3/10. Analogous calculation$ can be carried out
for all other combinations of the two praperties black and white.
\N

% 3

EXAMPLE OF NONCOMBINARLE COLLECTIVES

It is, finally, not without intergst Lo give an cxample of two collec-

S

lives which are neither independent noy dependent in the above sense,
collectives whitH "W AR Ya¥&iRher uncombinable. Imagine
that a certain meteorological guantity, such as the rclative humidity
of the air, has been rgeafsured over along time every day at 8 a.m. The
results are exprcss%&\by numbers, say by integers from | to 6. These
numl?ers are ﬂ'm.a tributes in the collective formed by these con-
secufive measurements. Now imagine that the same or another
me'teoyologig}zﬁ quantity has also been measured every day ai 8 p.m.
This gvg&g‘us a second collective, the elements of which are in onc-
to-ope\'qorrcspondence with the elements of the first collective. We
asgume that both sets of measurements have the essential properties

Sfeollectives, namely, existence of limiting frequencics and random-

{Dess, We can, furthermore, assume that the d; stribution in the second
¢ collective is not

affected by sanipling by means of the first one, in

other words, that EVCIUNE measurements followin £ a certain morning

value, say the value 3, have the same distribution as those following

any other morning result. All these assumpti - D
- B assumptions do not preclude,
ggt\ifg ef. the possibility of a regularity of the following kind: on cach
Ay & morning value, 3, if it happens to occur on this day, anto-

matically involves the occurrence of the same value 3 in the evenin e

1n a case like this, the combination of the two collectives produces a
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sequence which is not a collective. By applying to the first collective
the place selection consisting only of the 28th, 56th, 84th . . . ohser-
vations, we obtain a sequence for which the probabilities of the attri-
bute combinations (3,1), (3.2), (3.4), (3,5}, and (3,6) are zero. For
example, py, = py X 0 =0, where p, is the probability of the
morning value 3, and 0 the probability of an evening value 1 follow-
ing & morning value 3, The probability of the combination {3,3),1.e.,
Pa,a equals p, X 1 = p., since the probability of an evening value 3
following & morning value 3 is 1. The distribution in the sclected(
sequence is thus different from that for the total of all morning and
evening data, which shows for all possible combinations definitemnon-
zero probabilities. The sequence of elements obtained by combinalion
is, in this case, not a collective, sinece in this sequence the)limiting
values of the relative frequencies can be changed by plagesselection,
The initial single sequences of observations have ilie “property of
randomness; they have, however, a certain mutdial\relation which
precludes their being combined into a new coligdtive. We call two
collectives of this kind noncombinable. O

This example illustrates again the insuﬁiciq\ncy of the well-known
clementary form of the multi plication rul€)yWhich docs net take into
account the possible relations betweenythe two collectives. A reliable
statcrment of the multiplication r%%‘;éé%pggﬁ Hédased an a rational
concept of probability whose fatmdation is the analysis of the
collective. N

)
SUMMARY OF TH ',’\POUR FUNDAMENTAL OPERATIONS

I shall give the subStance of what we have learned about the four
fundamental operdiions, in the form of the following short state-
ments: A\

1, Sc)'ectr'(w;‘:beﬁnition: The attribules unchanged, the sequence
of eIemenL‘{\i‘educed by place selection. Solution: The distribution is
unchanged,

2. Mixing: Definition: Elements unchanged, attributes *mixed’.
Sphation: Additon rule.

/ Partition: Definition: Attributes unchanged, sequence of
elements reduced by partition. Solution: Division rule.

4. Combination: Definition: Attributes and clements of two col-
lectives combined in pairs. Solution: Multiplication rule.

With the statement of these four fundamental operations, and
with the indication of the methods for determining the distributions
In the derived collective from that (or those) in the initial ones, the
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foundations of the theory of probability arc lajd. The method of
solving concrete problems by the application of this general scheme
is as follows:

First of all, we must find out what the initial coliectives are and
state their distributions. Secondly, we must consider the final collec-
tive whose probabilities we arc asked 1o determine. Finally, we have
to carry out the transformations from the initial collectives Lo the
final one, in steps which consist of the fundamental operations. The
problem is then solved by applying to each operation its solfiion
from the above scheme. Of course, it is not alws ¥5 necsssdry to
proceed pedantically in this way, especially after onc has@ogqlired a
certain experience. An cxperienced worker in the ficld Uhmediately
recognizes certain connexions between the collectivds® under con-
sideration. He will use certain repeatedly ocefihng groups of
fundamental operations as new operations, whith he applies in
one step. In many examples, not only insthewsimplest, the entire
preparatory work reduces to a minimum, “Tht whole solution may,
_for nstance, consist in a single mixing cr\dtion; this may. however,
mvolve difficulties of a purely analy%g nature, consisting in the
evaluation of complicated sums or {npegrals.

In the following sections I shall discuss an example in which no
mathematical difficulties are iyolved, but which illustrates several
combinationsvol thd kAR Eltations.

A PROBLEM OF CHEVALIER DE MERE

This is perhaps \the oldest problem ever solved by probability
calculu_s; a comdideration of it will be useful for us from more than
one point ofFicw,

In the tinte of Pascal and Fermat,® two gveat seventesnth-century
mathg_@aﬁcians, there lived in France g certain Chevalier de Méré,
E{P.ﬁ‘sim“ate gambler. One of the games of chance fashionable in his
Hing was played in this way: A die was cast four times in succession;
Qfte of the players bet that the 6 would appear at least once in four

. against it Chevalier de Méré found out that there
was aslightly greater chance of getting the positive result (i.e., 6 com-
g out at Ieasl.‘ once in four casts), Gamblers sometimes like variety
and the fqllowmg variation of the game was introduced: Two dice
were used mstegd of one, and were thrown twenty-four times ; the sub-
Ject of the betting was the appearance or nonappearance of at least

one double 6 in twenty-four casts, Chevalier de Méré, who was obvi-

ously a studious gambler, found oyt that in this case the win went
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more often to the player betting against the positive result (the appear-
ance of the combination 6,6). This seemed to him strange and he even
suggested that arithmetic must be wrong in this case. His argument
went as follows: The casting of a single die can produce six different
results, that of two dice thirty-six results, six times as many. One of
the six possibilities in the game with one die is 6; one of the thirty-six
possibilities in the game with two dice is the combination 6,6. Tn
casting two dice twenty-four times, the chance of casting 6,6 must be
the same as that of casting 6 in four casts of onc die. Chevalier de
Mévé asked Fermat for a solution of this paradox; and Fermatl
solved it. His solution has been preserved for us in a letler addressed
to Paseal, PR Ny
I will give the solution in the following section, in a more gentral
form than that given by Fermat, and will show how the selution
foltows from the concepts on which we have founded gitg)theory of
probability. \

SOLUTION OF THE PROBRLEM OF CI«IE\*’,A:L\}ER DE MERE

We begin with the simpler case, that of th&idur casts with one die,
The initial collective is obviously the scquenée of casts with one die;
\_he_clements are sin_gle casts, an.d“t;ne ‘E‘g@bﬁf,%s,—%#e tg%e pumbers 1 to
6. Fermat assumed implicitly that I:ﬁgs:x attit utcgarégequaﬂy prob-
able, Le., that the dic used is aftiunbiased’ one; this assumption,
which assigns the value 1/6 toeach of the six probabilities, forms the
basis of his calculations. Atcording to our gencral concepts, the
solution can be found witheut this special assumption. We ascribe to
the six possible results,thassix probabilities py, pa, . . ., p, which may
be all equal or differesit from each other, but in any case give the
sum 1. P\%

What is the/problem? We are asked to determine the probability
ofa6 app%:f?q’g at least once in a group of four casts. This is obvi-
ously a ptObability in the following new collective: the elemenis are
groups f four consecutive casts; the attributes are ‘yes’ or ‘no’
(simpl8 alternative)—~yes’, if at least one of the four results is 6, ‘no’
if\ng 6 occurs in these four results, This is the collective which we
mnust derive from the initial one. What we are interested in is the
probability of the attribute ‘yes” in this final collective.

We must now find out which of our fundamental operations lead
to the final collective X from the initizl one, which we may denote
by C. First of all, we drop the distinction between the results 1, 2, 3,
4, and 5, because we are only asked whether the result is 6 or not.
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We begin therefore by mixing the attributes 1 to 5, and leaving 6 as
a second alternative attribute. We form in this way a new collective,
which we may call C’, consisting of the same clements as C, but
with only two attributes, 6 and not-6. According to the addition rule,
the probabilities of these two attributes are

Pe and py - py = py - py + i,
respectively. Since the sum of these two probubilities must be |, we
can replace the last sum by (1 — p,). O

We now apply to C’ a selection, by scleeting from the Mifinite
sequence those elements whose numbers in the originul sCAuénce are
: R

1,59, 13, 17,21,25 ... ™

The attributes in this new collective—let us, calt it C’—arc the
same as in ' (ic., 6 and not-6). According to-ouf peneral rules, the
distribution must also be the same, and the probability of a 6 is
therefore still p;, that of not-6 is (1 — pah

We can form a second similar collectig by another selection from
C’, namely, by retaining the elements Whose numbers are

2, 6,10, 14,18/ 22, 26 ., . .
and that of lxlfo‘s”’t‘.?’so‘%g%tié’&l%%i‘?gﬁig.’iﬁhe probability of 6 in it is g
In the same way WE}‘caI'i:j’ ot a third selection, that of the clements
AN, 18,19, 23, 27 L.
and a fourth siekc\tién—that of the elements
> 4,812, 16,20, 24, 28 . . .

ANY
Thesg (ast two collectives we call ¢’y and €’,. We have thus
fcm}efl:altogethcr four new collectives, 'C’l, C'y, C'y, and C'y by
sclechion from the collective C’; the attributes in each of them arc
Shaple alternatives with the probabilities p; for the attribute 6, and

— o

SN = pg) for the attribute not-6. These probabilities are known
V™ Quantities, since we assumed th ‘

\ )

: at the values of p,, pa. . . ., pg &T€
the given data of the problem. e e P

f Itthmfmams "% to make one last step: to carry out a combipation
N ith %fﬁ.utiil?()]lcct]ves derived by selection. Let us first combine Cs
NG x-S means that we couple together the first clements of the

two collectives (casts 1 ypd 2 '
. . th 3 (casts 5 and 6},
the third ones {casts 9 oy o econd one A

and 10), and so on. The new collective
f in thi ), - The new colle
or;r[;cd " this way we call €' its elements are certain pairs of
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casts, namely, those pairs whose places in the original sequence
WEIre

land 2; 5and 6; 9and 10; 13 and 14; 17 and 18;. . .

The attributes in this collective are the four possible combinations
of the two attributes 6 and not-6—i.e., 6 and 6, 6 and not-6, not-6
and 6, and not-6 and not-6.

Are we right in applying the procedurc of the combination of
independent collectives to the collectives €5 and €737 The answer is
in the affirmative; this case is one of those mentionad above,‘in
which the independence follows directly from ihe derivation of the
collectives, This fact can be proved mathematically; it is, hg’wevér,
easy 10 recognize, without any matiematical deduction, \that the
randommess of the initial collective € implies the mutual ihdepen-
dence of the collectives €'y and €', derived from it{#e the inter-
mediate collective ). The probabilities of the foliy) combinations
mentioned above can therefore be calculaled \By' means of the
multiplication rule. That of the first one (6 an@\6} s p,2, that of the
sccond and third one (6 and not-6, not-§ and 6) is p(1 — pg), and
that of the fourth one (not-6 and not-6) A8 — p,)%.

Exactly the same kind of combination £4n be carricd out with the
collectives C’y and C’,. The new %Q\};];%?&i}'}cauﬁmaﬁfngim this way,
contains the following pairs of casts”

3and 4; 7 and 8; 11 and 12; 15 and 16; 19 and 20: . . .

The attributes and the pygjb}bilﬂies arz the same as in €,

We now proceed tocthe last combination—that of C"| and C”,.
This process means the coupling together of two pairs, c.g., casts 1
and 2 (from thegallctlive C",) with casts 3 and 4 (from the collective

# \o *

C’y), next casts(Sand 6 with custs 7 and 8, and so on. The elements
of the new.foMective are thus groups of four casts each, those

nulnbere% v/
&

N ltod;5t08;%t012; 13 to 16; 1710 20; . . .

& ¢ denote this collective by K’ its attributes are the sixicen
3. . . | - .\ . i .\
1}@351]3]@ combinations of the four at(ributes occurring in C”, with the
four attributes occurring in C”,. The corresponding sixteen probabili-
ties can be derived by the multiplication rule, whose applicability in
this case is due to the same relations as in the casc of the combination
of '} with C’y, and of €y with €', The probability of the attribute
‘6 and &, ‘6 and ¢’ (four ‘6’s"), for instance, is p° X pg? = py?; that
of the attribute ‘four times not-6 is (1 — p.)%; and so on.
61

Q"



PROBABILITY, STATISTICS AND TRUTH

We are now at the last stage of the calculation, leading {rom K’
to the final collective K. We are not interested in the probabiljties of
all the sixteen atiributes occurring in K, but only in the alternative;
no-6 at all, ie., four times nol-6, or all the other results. Another
mixing is thus necessary. The probability of the property ‘no-6 at all’
remains unaffected by mixing, ie., equal to (1 - - p,)". The proba-
bilities of the remaiming fifteen results nced not be calculated separ-
ately. Their sum is given by the expression

p=T1-—01—p) \

This is the probability of the property ‘not four tiniék*?wbﬁ’—
i.e., ‘at least one 6’—in the collective X (derived by mikingz from the
collective K'). Our problem is thus solved. N

'at ¥ ;

\\
DISCUSSION OF THE SOBDFION

The result can be extended, without iig)e\c'h further calculation, to
the second part of de Méréd’s problent™'the case of twenty-four casts
of two dice. We consider the sequéniee of casts with two dice as the
initial collective C; the result in which we are interested is a double 6.

~

The probabili‘kmﬁ_a%qu[imegﬁ'_tbi.él_cpﬁivalion must be replaced now
by the probability p; .. that'bfgz:astmg a double 6 in an indefinitely
long sequence of casts oftwo dice. The solution is found along
exactly the same linei”ds above, although tweniy-four selections are

now to be made insfénd of the four selections required in the simpler
example, and twenty-four selected collectives must be combined in
Successive steps, We need not discuss all these steps in delail; the
outcome i $Imply the substitution of the exponent twenty-four for
the expukic,nt 4 in the above-given formula, Henge,
M~ ,
A Pl =l = pg o)

J3,the probability of a double 6 appearing at least once in a series of
~O tWenty-fqur casts with two dice,

) Assuming that the results of the game with two dice can be con-
sidered as a :_:qmbination of two independent collectives, we can
express the 1n1_t1a1 collective C of the second part of the problem in
terms of the initial collective ¢ of the first part. The probability

Pu s In this case equal to p,2. Th p i et
double 6 becomes 9 Ps ¢ tormula for the probability o
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This last probability we now wish to contpare with the probability
p calculated for the game with one dic.

We see, first of all, that the two expressions are different. Tn other
words the values of p and p” are not identical for arbitrary values
of the probability p. De Méré had surely a correct die in mind,
with pg = 1/6. By introducing this particular value into the two
formule we obtain the following numerical values of p and P

p o= 1= (5/6) = 0.516,
P =1 - (35/36)% — 0.491.

The observations of de Méré were thus correct: in betting on
a4 6 in four single casts, the chance is somewhat higher than 0.5,.@&&
In betting on a double 6 in twenty-four double casts, somewhat
lower than 0.5, It is therefore profitable to bet on ‘yes' in“the first
game, and on ‘no’ in the second one. His reasoning was;'howwer,
inexact, and his conclusion that, theoretically, the chau}:cs must be
the same in the two cases, was wrong. ’

N7
SOME FINAL (;ONCLUSI‘O}LS“

A number of useful consequences may b drawn from this solu-
tion. First of all we see that the so.Eut;g)arL'gf a problem in the theory
of probability can teach us sometRINE AN " ABoNT the Teal world.
[t gives a prediction of the resulglpf a long sequence of physical
events; this prediction can be testcd by observation. Historically, in
this case the observation preofded the calculation. This is, however,
of no basic importance, singe the result of the calculation is of
general validity and can gE)e\applied to all similar cases in the future.
For instance, anothef hbumber may be substituted for 4 or 24, a
biased die can be used instead of the unbiased one (i.c., the proba-
bility pg can beydifferent from 1/6), etc. Another characteristic
property of, gesplts obtained by probability caleulus clearly illus-
trated by #ads “problem is that all such results apply to relative
frequencigsNof cvents in long sequences of observations, and to
nothievelse. Thus, a probability theory which doees not introducc
frofn $HE very beginning a connexion between probability and reiative
freqifency is not able to contribute anything to the study of reality.

I should like to stress here also another side of the probiem under
discussion, It is often assumed that in games of chance we are always
dealing with probabilitics known a priori from the general principle
of equal probability of all possible results. However, in the game
considered in the above example, there is no reason for assuming
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a priori that the chances of the two partners are the same. It is by no
means obvious that exactly four casts of a die should be uecessary
to give to the result 6 the chance 0.5. The origin of such games can
only have been the observation of a very large number of actual
casts of dice.

The history of this particular game of dice might have been as
follows: In the course of centuries, men learned how to malke dice
so that the chances of all six results were about the same. Afterwards,
it was found that with these unbiased dice the chance of castiug 6
once in four casts was close to 50°, and that the samc was thJe for
the chance of casting a doublc 6 in twenty-four casts. Finaliyplonger
series of observations showed that in these two cases the gwdbabilities
were not exactly equal to 0.5; deviations were foun d which required
explanation. Now camc the theory, which investighted the relation
between the two properiies of a die—namely, ii§ property of falling
equally often on each of its sides, and its prapeily of giving in half of
the sequences of four casts at least one 6. Gadlculations showed that
these two properties are not strictly in acsordance with each other:
The value p, = 1/6 results ina valueg-<=0,516 and not 0.5. It is also
easy to caiculate, from ihe aboveformula, that p == 0.5 requires,
conversely, a value of pg slightly smallcr than 1/6, namely 0.1591. Ttis
hardly possible 1o demonstraeimore clearly the empiri}:al character
of the theory é‘f‘ﬁ}‘bﬁ'@.ﬁmbﬁ’ﬁﬁ{m{%‘ﬁﬁ)ose of interpreting observable
phenomens, \\y

However, this has bfought us to the subject-matter of the next
lecture. T shall not, thatefore, pursue this line any further here. T must
also abstain fro ~eomnsidering more examples and from discussing
more special problems in detail. They would teach us little that we
do not alrcag.y. Know.

0_11 a f‘orf}'ter occasion 1 said that expericnee in calculating helps us
to simplify the solution of special problems, to reduce the number
of l;%ﬁ':ssar}' steps, which was 5o large in the examiple discussed in the
peececing paragraphs, It is, however, not my task to give you this

,\.p,ractical tuition. [ prefer to close by giving a shoit sunmary ol the

A\\JMost important points, marking our development of probability
N/ caleulus. © pment of p )

SHORT REVIEW

o I.bT]}e_ starting point of the theory is the concept of a collective.
Qonbilitybas & real meaning onlyas probabilityin a given collective.

2. A collective is an infinite sequence of observations, each
G4
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obsorvation ending with the recording of a certain afiribute. The
relative frequency with which a specified attribute oceurs in the
sequence of observations has a limiting value, which remains un-
changed if a partial scquence is formed from the original one by an
arbitrary place selection,

3. The limiting value of the relative frequency of a given altribute
—which, as just staled, is insensitive to all kinds of place selections—
is called its probability within the collective considered, The proba-
bilities of all the attributes within a collective form its distribution..\

(This much was covered in the first lecture. Now we come to the
new matter we have learned in the second lecture.) O\

4. The task of the theory of probability is to derive new colldetives
and their distributions from given distributions in one or morenitial
collectives. “The specjal case of a uniform distribution of profabilities
in the original collective (‘equally probable’ cases) pJags no excep-
tonal role in our theory, S

3. The derivation of a new collective from the Initf) ones consists
in the application of onc or several of the fourindamental opera-
tions (Selection, Mixing, Partition, Combinstiéf).

6. The first operation, Selection, leaves¥e istribution unchanged;
the second one, Mixing, changes it accdrding to the addition rule;
the third one, Partition, changes it acdokding to the division rule, and
the fourth one, Combination, ci‘gé&ﬁ@l‘.@*‘?ﬁ?&%@%‘ﬁﬁ%‘?‘c}gtﬁc multipli-
cation rule. N

7. The knowledge of the effect’of the four fundamental operations
on the distribution enableslls, in principle, to solve all problems of
the calculus of probabi{ﬁeé. Actual problems may be, neverthcless,
very. nvolved, whet‘h& on account of difficulties in the logical
analysis of the problem, ie., in the cnumeration of tie necessary
clementary opefafions; or because of complications arising from the
accumulationy0f ¢ oreat number of elementary operations; or
finally, becatse of purely analytical difficulties.

8. Ee}g;bﬁrobabﬂity calculation is based on the knowledge of
certaingetative frequencics in long sequences of observations, and its
resultyis always the prediction of another relative {requency, which

am be tested by a new sequence of observations.

The following is a summary of the essence of these points in 4
single sentence:

The theory of probabilily deals exclusively with frequencies in
long sequences of observations; it starts with certain given frequen-
cies and derives new ones by means of calculations carried out
according to certain established rules.

63



«Seeond, 1
“\“appeared since my lirst publications which have sometimes con-

THIRD LECTURE

Critical Discussion of the
Foundations of Probabilityd

7'\

THAVE given, in the first two lectures of this ser\ies};‘. an outline (_)f
what I call the foundation of the new probabititg\theory. The main
points of the theory were briefly restated atMhe end of the last
lecture. If it were my intention to give u somplete course on the
theory of probuability, I should now demgnstate how new collectives
are derived from given ones by more m@;ﬁore complicated combina-
tions of the four fundamental opeiétions, and, on the other hand,
how all problems usually treated in probability calculus can be
reduced to combinations of thiskind. 1t would, however, be impos-
sible to do this “’%ﬁg”ﬁ}}.ﬁ}ﬁ \ '@gﬁ{natical methods out of place ip
this book. Those %uage .in erested {n this side of the theory may
refer to my Lectures onthe Theory of Probability, originally publlshf‘:d
in 1931, and to my Mathematical Theory of Probability and Statistics
of 1946 (see Notes\ahd Addenda, P- 224). Here, we are interested m
the general faundations of the theory.

‘This lecturk will therefore deal with a eritical survey of the results
describedipibe first two lectures. Discussion will proceed along two
lines. First, I shall consider the relation of the mew theory to t‘he
classicabone! and to some of the recent modifications which are -
tended to provide the classical theory with a firmer foundation.
am going to deal with the numerous works which have

tained objections to my theory, and sometimes suggestions for its
modification or further development.

THE CLASSICAL DEFINITION OF PROBABILITY

The *classical’ definition of probability was given by Laplace and
has been repeated, until about 1930, in nearly all the textbooks on
the theory of probability with its form almost unchanged. 1t runs:

6o
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Probability is the ratio of the number of favousable cases to the total
munber of equally likely cases, This same idea underlies all the work
prior to that of Laplace, although the anthors did not always state
the definition clearly,

[ must point out, however, that in rore recent times many mathe-
maticians have been aware of the inadequacy of Laplace’s definition.
tor instance, Poincaré? (1912) says: ‘It is bardly possible to give any
satisfactory definition of probability; the usual one is as follows
. - . Later, we shall sce that a complete logical development of the s
theory on the basis of the classical definition has never been attempt-
ed. Authors start with the ‘equaily likely cases’, only 1o abapéon
this point of view at a suitable moment and turn to the notlan of
probability based on the frequency definition; in fact,'th..;)\f even
sometimes explicitly introduce a definition of this kinde. Bor this
reason 1 maintain that the gulf between the new poind of view and
the classical one is not unbridgeable. For most mafbsmaticians the
acceptance of the new definition would only meaMthe surrender of
the form in which the theory of probability/issually presented,
namely, one which permits the solution ei\d number of simple
problems at the beginning of the coursewhlle avoiding the imme-
diate discussion of more difficult and funddmental ideas.

The mam objection to the definjjipp-ghienhydeplose concerns the
expression ‘equally likely’ or *equaliyipossible cases, Ordinary speech
recognizes diflerent degrees of possibilily. A certain event is some-
times called ‘possible’ or ‘imfinssible’; it may equally well be ‘quite
possible’ or ‘hardly possiblel\and these cxpressions mean that we are
conscious of the varyig d€grees of ‘effort’ involved. Tt is *hardly
possible’ to wrile, in Io}ghand, at a speed of forty words a minute,
and “impossible’ ata speed of a hundred and twenty words a minute.
Nevertheless, it gby‘quite possible’ to achieve the first speed with a
typewriter, an@thie second by using shorthand. In the same way we
call two evgfs ‘equally possible’ if the same ‘effort’ is required to
produce"e’;\g’: of them. Jacob Bernoulli? a predecessor of Eaplace,
does idifact speak of events ‘quod pari facilitate mihi obtingere
possit(thal can be achieved with equal ease). However, Laplace
wag Jthinking of something clse when he spoke of ‘equally likely
cases’.

In another sense we say, ‘This event is more fikely than that’, and
in this way we express our conjecture concerning what we expect to
oceur; this is the sensc in which Laplace and the foilowers of the
classical theory -of probability use the phrase ‘equal possibility’.
Thus we see that this latter phrase merely means ‘equally reliable
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conjectures’ or, to use the current expression, ‘equal probabilities’,
The phrase “equally likely cases’ is cxactly synonymous with ‘equally
probable cases’. Even such a voluminous treatisc as A. Meinong’s*
Probability and Possibility, only scrves to conlirm this simple fact. Tf
we remember that with equal probabilities in a collcetive the distri-
bution was called uniform, we may say that, unless we consider the
classical definition of probability to be a vicious circle, this definition
means the reduction of all distributions to the simpler case of uniform
distributions. A

N
N

EQUALLY LIKELY CASES . . R\,
We must now examine a little more closely the wag i1y which this
reduction is carried out. An unbiased die can pradude six cqually
likely results. One of them is the number 3, and,&Herclore, the prob-
ability of throwing a 3 is 1/6. If a wheel usédtid a lotteiy bears the
numbers 1 to 90, there are ninety equally Lkl cases, Nine of these
correspond to numbers expressed by a‘giigle digit (1 to 9); nine
others are two-digit mimbers which ate-divisible by 10; the remaining
seventy-two numbers have two digits¥and are not divisible by 10.
Therefore, the probability of a ngmber with a single digit is 9/90 =
/10, and so is that SE a lt;)aqbér' divisible by 10; the probability of
all the other r&iflts isrgﬂ, i Bt 2B nsider as a third example a
game played with two unbrased dice. Each possible combination of
numbers is an equallydikely case; there are thirty-six such combin-
ations. Therefors tkié%:robabﬂity of throwing a double 6 is 1/36;
that of throwing s sum 11 is 1/18, because two cases are favourable
lo this result, flamely, 5 on the first die and 6 on the second, and
vice versas, (757
. The cm}n(sjderation of these three applications of the theory of
6qual:1y;1i ely cases’ leads to the following conclusions, In the first
caS§\W‘:‘: have obviously a mere tautology, if we remember that the
expressions ‘equally likely’ and ‘equally probable’ arc identical,

¢ '\’Fﬁé Onl_)’_che_l‘ consideration involved being that the sum ol all the
~probabilities is equal to unity. Tn the second case, we have several

favourable cases united into a group. This is a special case of the
pperatlon qiscussed in the previous lecture, that of mixing the Jabels
In a collective. The attributes 1, 2, 3, . . ., 9are mixed, the attributes
10, 20, . . ., 5?0 likewise, and also the remaining attributes. Three
groups of attribuies are thug formed, the single probabilities being
cach equal to 1/90; the addition of the probabilities in each group
Produces the results shown above, For the game with two dice which
68
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formed our third example, the classical theory uses a theorsm
relating to the combination of independent collectives. In a very
specialized form this theorem states that: Each combination of one
of the equally likely cases from the first and from the second colleo-
tives produces an equally likely case in the new collective. As we
know, we can solve the problems which occur most frequentiy and are
most important in the theory of probability by the processes of mixing
and combination. Hence, the theory of equal possibilities permits us
to solve most problems in which there are uniform distributions of
probabilities in the original collectives. Most of the usual games of
chance—unbiased dice, properly made roulette wheels, and so forth
—produce collectives of this kind. N

L B

el
7 %G
S

- DO NOT ALWAYS EXIST %4>

€

But how ave we to deal with the problem of a bigséd'die by means
of a theory which knows only probability bas%on a number of
equally likely results? Tt is obvious that a slighbyfiling away of one
corner of an unbiased dic will des troy thevequal distribution of
chances. Arc we to say that now there is fgonger a probability of
throwing a 3 with such a die, or that the pfobability of throwing an
cven number is no longer the sum of the pr iliti hrowing a
2.4, or 6? According to the c]as}g"igﬂ ) é%ﬁ%%ﬁ%%%ﬁ theore%ns
derived on the basis of equally likely cases can be applied to a biased
die (since there is no probability without equally likely cases).
Nevertheless Laplace® in hissfundamental treatise attempted to deal
with the case of a coin whigh*had different chances for showing heads
or tails. Tt was later réalized that his conclusions were not valid and
later textbooks aqn/the theory of probability merely omitted any
consideration of igsé questions. The biased die was not considered
a subject worthyyof treatment by the calculus of probability. It is
obvious thatSuch a point of view admits of ne argament.

There dte other problems, however, belonging to the same
category s the biased dic which cannot be set aside s easily, One
of thesgis the problem of the probability of death, According 1o 3
ceftain insurance table (see note 14, lect. 1), the probability that a
man forty years old will die within the next year is 0.011. Where are
the ‘equally lik ely cases’ in this example ? Which are the ‘favourable’
ones? Are there 1000 different possibilities, eleven of which are
‘favourable’ to the occu rrence of death, or are there 3000 possibilities
and thirty-three ‘favourable’ ones? I would be uscless to search the
textbooks for an answer, for no discussion on how to define equally
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likely cases in questions of this kind is given. When the authors have
arrived at the stage where something must be said about the proba-
bility of death, they have forgotten that all their laws and theorems
are based on a definition of probability founded only on equally
likely cases. The authors pass, as if it were a matter of no importance.
from the consideration of a priori probabilitics to the discussion of
cases where the probability is not known a priori. but has to be
found a posteriori by determining the frequency of the different
attributes in a sufficiently long series of cxperiments. With extra-
ordinary intrepidity all the theorems proved for probabilitics of the
first kind are assumed to be valid for thosc of the second kindy [T an
author wishes to substantiate this step. he usually refors to BACTaulls
so-called Law of Large Numbers, which is supposed Yo form a
bridge between the concept of a priori probabilitieséang the deter-
mination of probabilities from observations. ‘O

We shail see later that this does not work..ﬁﬁl that the whole
chain of argument js completely circular. Without awaiting this dis-
cussion, we may say at once that, up to theyprCsent time, no onc has
succeeded in developing a complete thedry of probability without,
sooner or later, introducing probability by means of the relative
frequencies in long sequences. These Y8, then, little reason to adhere
to & definition which is too narrow for the inclusion of a numiber of
i{npo_rtant applicationbrasdi RN &R be given a forced interpreta-
tion in order to be capablegf dealing with many questions of which
the theory of probabilityhas to take cognizance. The position may

be illustrated by an Aahalogy from the field of glementary plane
geometry, &\

X\
SO A GEOMETRICAL ANALOGY

Somebedy might consider the possibility of developing the geo-
metry o"i\ﬁosed rectilinear figures (polygons) from the exclusive
consideration of polygons with equal sides of one given length. In
thisikind of geomietry there would be no measurement of length, all

...\:lf?gurcs being determined by their angles and number of sides, If an
N\ ;adh?rcnt_ of this system of geometry were prescnted with a triangle
having s;des‘of different lengths, say three, four, and five units, he
would describe this figure as an cqui]atei‘ai dodecagon in which
three, four, and five sides respectively fall on straight lines, i.c., a
dodecz}gon with nine of its angles each equal to 180 degrees. The
Ifg;lctmn of all polygons to equilateral ones is possible without greal
I? gulty provided all the sides are nyylg; ples of a certain unit length;
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this can be carried to any desired degree of accuracy, if a sufficiently
small unit is taken. Nevertheless, in a geometry of this kind a
distinction must be drawn between polygons for which the number
of sides is known a priori (all of their angles bcing different from
180%), and those for which it must be determined « posreriori by
expressing the lengths of their sides, exactly or approximately, as
multiples of the unit length.

It is quite possible to develop a theory of this kind, bul no mathe-
matician will say that the concept of length and the measurement of
length can be cntirely removed from geometry in this way. In fact,
such a theory is merely a roundabout way of replacing the mats,
direct approach. N\ *

‘The same holds true for the theory of probability based onequally
likely cases. From an historical point of view, it is casy to 3,}ﬁdérstand
why the theory started with the consideration of cases égnal prob-
ability {(corresponding to he equilateral polygons), ‘Migficst subjects
of the theory of probability were games of chance Based on uniform
distributions of probabilities. If, however, a qubm mathcraatician
atiempts to reduce the probabilities of life and\d¢ath, determined as
relative frequencics, to some hypotheticalegually likely cases, he is
merely ptaying hide and seek with the nectssity for a comprehensive
definition of probability which foy @uadiBiemibsajusiong imavoidable
as the wdea of length and of its mpa§t11’*cn1cnt are for geomelry.

Ny

HOW TO RECOQ{\”‘I}EE COUALLY LIKELY CASES

I think that I have m.a\e clear the distinction belween our defini-
tion of probability,and the classical one, which is still preferred by
a4 few authors. Ifhaticipate that, in the {uture, the more important
problems of inf§ance, statistics, and the theory of ervors will take
precedenc by\'ef the problems of gambling, which are chiefly of
historical{teportance. Then there will be no hesitation in founding
the thedry of probability on principles which are both simple and
I'aliqhﬁ'l. In fact, we have alveady entered upon this development.

Yarious anthors have asked how it is possible to be sure that each
of the six sides of a die is equally likcely 1o appear or that each of
finety numbers in a lottery is equally likely to be drawn. Our answer
is of course that we do not actually know this unless the dice or the
lottery drums have been the subject of sufficiently long series of experi-
ments 1o demonstrate this fact. In contrast to this point of view, the
defenders of the classical theory use a particular argument to support
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their concept. They assert that the presence of equally likely cases is
a piece of a priovi knowledge,

Let us assume that a perfect geometrical cube has been made from
perfectly homogeneous malcrial, One would think that it is then
clear, a priori, that none of the six sides can be more Jikely to show
up than any other. One usually states that in this case it is certain
that the chance of the cube falling on any particular sids is the same
for all six sides. I will concede this statement for the moment, al-
though the result of the throw depends also on the dice box, as well
as on the whole process of throwing the die from the box, and s9.0n.
I will also forget that the statement has a definite meaning gftly*if we
already know what *equal chance’ means, For example, we NE % have
adopted the frequency definition, and according te tHis, ‘equal
chance’ of a number of results would mean equalif§quency in a
long series of throws. Without some such definitiéf, the statement
conveys no knowledge at all, either a priogk 8r)of any other kind.
Let us, however, overlook these points and\assume that the whole
lask consists in ascribing some fractiony, %e ‘probabilities’, 1o the
six sides of the die. The question arigeswiiether, for an actual cube,
we can arrive at the conclusion thatalMhese numbers must be cqual
by a logical process of thought, indépendent of experience. As soon
as we consider mare dglgaqhg i .‘%ﬁ#m_ptions of homogeneity and
symmetry which must be satighed by the cube we find out the practical
emptiness of the whole statathent.

We can call a mateial ‘homogeneous’ in a logical sense if no
particular distinctiq[{'q\an be made between any of its parts; that 18,
the material mustaiss be one whose parts have the same origin and
history. However, one part of the ivory of which the die is made was
certainly neaferto the tip of the tusk than some other part; con-
sequently, {lie identity of behaviour of all parts is no longer a logical
necessit;{}l“his identity of behaviour follows in fact from experience,
which stiows that the original position of the ivory on the animal
dogs hot influence its properties in this respect.

N .’I’n_ a concrete example, we not only use this but many other de-
N ..d:dCt]OI'lS from experience as well, For instance, we inscribe the six
* sides of the die with six different numbers and assume that this does
not affect the relative chances. Primitive tribes, i.c., human beings

with a restricted experience, frequently believe the fate of the human

body to be affected by inscriptions on its different parts. Morcover,

we not only Paillt the numbers on the die, but make from one to six
meisions on its surface and so substantially chanse its geometrical
symmetry; we still assume, on the busis of experier?ce, that this does
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not affect the chances of the game. If a supporter of the a priort
concept of probability is pressed to explain what he understands by
‘complete homogeneity’, he finally merely requires that the centre of
gravity of the cube should coincide with its geometrical centre. If he
knows enough mechanics, he adds that the twelve moments of inertia
about its twelve edges must all be equal. No one will any longer
maintain that it is evident a priori that just these conditions are
necessary and sufficient for the ‘equal possibility’ of the six sides of
the die, and that no further conditions, such as conditions involving
moments of higher order, need be considered. In fact, this formuta-{
tion contains a number of resutts taken from the mechanics of rigid
bodies, a science likewise based on experience. We may sum up euis
discussion by saying that no conerete case can be handled mefely by
means of an a priori knowledge of equally likely cases. Iids always
necessary to use more or less general results derived fuom observa-
tion and experience in order 1o determine which prgpefties of the
apparatus that we are using may influence the cousse’of the experi-
ments, and which properties are irrclevant from this point of view.

The situation is very much the samc as in the'well-known applica-
tion of the principle of syrametry to the desivation of the equilibrium
conditions Tor a lever with equal arms. §¥Hen the two sides of the
lever are completely identical, the M%%lalit%of the forces is assumed
to follow by reason of symmetry’ VERRI SPHI 188 theorem 35,
however, much too specializedapart from the practical impossi-
bility of constructing a lever withexactly identical sides (in the logical
sense we have discussed), we, must bear in mind thai a lever with
equal arms is not defined 48" one having identical arms, but as one
in which the forces ad{®at equal distances from the fulcrum. No
further geometrical §ymmetry is required. Tt is instructive to see, in
the older textbookssof applied mechanics, how many figures repre-
senting levers.Of.different shapes have been drawn to acquaint the
student withn¥he idea of equal-arm levers which do not possess
geometri\c&k symmetry. Yet this decisive fact, that only the distances
from tiie fulcrum matter, is a result of experience and observation.

4 .\' 3

o
£

ARE EQUALLY LIKELY CASES OF EXCEPTIONAL
SIGNIFICANGE?

Those who admit the insufficlency of the above-explained a prion
approach but wish to maintain the exceptional role of ‘equally Iikely’
cases may reason as follows: If, in addition to geometrical symmetry,
3 cube possesses ‘kinetic symmetry’ (equal moments of first and
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second order), then the equal chances for the six faces follow from
the mechanics of rigid bodies.

However, let us consider now the case of a biased dic; we find that
here mechanics gives us no assistance, When we have determined all
the mechanical characteristics of this die, centre of gravity. moments
of inertia, etc., we are siill unable to derive, by means of mechanics,
the relative frequencies with which it will fall on it different sides.
In this case, the only way to determine the probability of the different
results s by statistical experiment, The case of a symmelrical die is
thus distinguished from that of an unsyrametrical one in thgt fa the
former case a prediction of probabilities is possible, if not\a’priori,
at least by the application of an experimental science ((nechanics)
which is of a distinctly deterministic character. A\

I think, however, that there is a faw in this mrsument. | have
alrcady pointed out that the result of a statistidaMexperiment with
a dic depends not only on the die but ox the whole process of
throwing it. It is possible to cheat, wittingliyor unwittingly, with a
perfectly symmetrical die by using certaid dricks in placing the dic in
the box or throwing it out, Very deIice?ber balanced psychological
or physiological phenomena are satcfimes involved in these pro-
cedures. This is well known, fromytbe experience with card sharps as
well as from certain observatigus which have often deficd explana-
tion and are theFerepritaitibiactnganer of so-called ‘parapsycho-
logy’# T do not want to_defend the oceult sciences; I am, however,
convinced that further anbiascd investigation of these phenomena by
co_liec-lion and evaluﬁm n of old and new evidence, in the usual
scientific manner, W9ill lead us sooner or later to (he discovery of new
and important felutions of which we have as yet no knowledge, but
which are natirdl phenomcena in the usual sense. At any rate, it is
pertain that gt the present stage of scientific development we are not
In & position to derive “theorctically’ all the conditions which must
be satisficd so that the six possible results of the cume of dice will
ocehy with equal frequency in a long series of throws, By ‘theoretic-

Lally we mean a procedure which may make use of some results of

o

\gxperimental science but dge

‘ ) S not involve statisticy) experiments
carried out with the apparatus whose probability we want to know,
or wiih one similarly constructed.

The following pProposition, althoy
new foundatio_n of the theory of probability, is an essential element
n my conception of statistical processes. The form of a distribution
In a collective can be deduced only from a sufficiently long serics of
repeated observations, and this holds true for uniform as weil as for
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all other disiributions. The experiment may be carried out by using
the system under consideration or one considered to be equivalent
to it on the basis of appropriate observations. This proposition
applies, in 1he first instance, to the distrib‘utigms_m the 1n1t1§tl colleg-
tives with which alt probability problems begin; it also applies to the
distributions in the derived collectives if these are to be checked by
observations.

THE SUBIECTIVE CONCEPTION OF PROBABILITY

According to our conception, the uniform distribution of probas
bilities is only a special case of the general distribution; this posiiion
is in sharp contrast to that of those cpistemologists who uphold the
so-called subjective theory of probability. N

Tn the opinion of these authors, the probability whigh/we ascribe
to a ceriaip event, 1.e., io our assertion of its occurf‘e}\ce, depends
exclusively on the degree of our knowledge; the assuinption of equal
chances for scveral events follows from our absgluie lack of know-
ledge. T have aiready quoted the characteristically concise formula-
tion of this principle due to E. Czuber. #lig/said that we consider
events to be equally probable if we ha}&fﬁ o1 the slightest knowledge
of the conditions’ under which cach efifhem is going 1 cur. In an
apparently more scientific form, “ﬁi’fé“:lsg T‘E?l%hs%g?ézﬁ%hg‘%iiuciplc of
indifference’. N\

T M. Keynes remarks, quitdjustly, that, by virtue of this principle,
cach proposition of whoseedsrectness we know nothing, is endowed
with a probability of 142 for the proposition and its contradictory
proposition can be rggarded as two equally likely cases. Thus, if we
know nothing aboup the colour of the cover of a book and say that
it s red, the probability of this assertion is 1/2. The same probabili-
ties can also)] @asserted for the propositions that it is blue, yellow,
or green, agd/consequently the sum of these probabilities is much
larger t}mﬁmity. Keynes’ makes every eflort to avoid this dangerous
consgquence of the subjective theory, but with little success, He gives
aAermal rule preciuding the application of the Principle of Indiffer-
ehge’ to such a case, but he makes no suggestion as to what is to
replace it. It does not occur to him to draw the simple conclusion
thatif we know nothing about a thing, we cannot say anything about
1ts probability.

The curious mistake of the ‘subjectivists’ may, I think, be explained
by the following cxample. If wo know nothing about the stature of
SIX men, we may presume that they are all of equal height. This
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application of the Principle of Indiffercnce is also legitimate from
the point of view of Keynes’s rule, This presumption may be true or
false; it can also be described as more or less probable, in the
colloquial meaning of this word, In the same Way we can presume
that the six sides of a die, of whose properties we know nothing
definite, have equal probabilities, This is, however. only a conjecture,
and nothing more. Expetiment may show that it is laise, and the
pair of dice used in our first lecture was an illustration of such a case.
The peculiar approach of the subjectivists lies in the fact that(they
consider ‘T presusme that these cascs are equally probable’ to be
equivalent to ‘These cases are equally probable’, since.<for)them,
probability is only a subjective notion. Nobody, howeyer, would
assert that the above-menticned six men are, in faet; equaily tall,
because the length of the body is something whiclean be measured
objectively, If we were to maintain this differenge between length and
its probability, equal probabilitics could in fastvbe ‘deduced’ from a
lack of knowledge; we should, however, have just as much right to
‘deduce’” any other Assumption concen@g these probabilities, e.g.,
that they are proportional to the squates of the numbers 1 to 6, and
this conjecture would be as permissible as any other.

I quite agree that most peoplesdsked about the position of the
centre of gravity of an unknowd cube, will answer ‘it probably lies
at the centre’. Whis answdibisadyeraét to their lack of knowledge
concerning this particular chibe, but to their actual knowledge of a
great number of othex{ubes, which were all more or less *true’. It
would not be imppssible to carry out a detailed psychological investi-
gation into the fotndations of our subjective probatility estimations,
I_Jut its relation(top probability caleutus is similar to that of the sub-
jective feelingof temperature to scientific thermodynamics. Thermo-
dynamics-fiad its starting point in the subjective impressions of hot
and cold“Tis development begins, however, when an objective
method Of comparing temperatures by means of a column of mercury
s 80bstituted for the subjective estimate of the degree of warmth.

~Bveryone knows that objective temperature measurements do not

h

\always confirm our subjective feeling, since our subjective estimate

15 often affected by influences of 4 psychological or physiological
charactf:r. These discrepancies certainly do not i mpair the usefulness
of physical thermodynamics, and nobody thinks of altering thermo-
dynamics in order fo make it agree with subjective impressions of
hot and celd. T have Previously pointed out that repeated observa-
vons and frequency determinations are the thermometers of proba-
bility theory,
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BERTRAND’'S PARADOX"

The attempts to justify, in various ways, the assumption of equally
likely cases or, more generally, of a uniform distribution by having
recourse to principles of symmetry or of indifference fails definitely
in the treatment of the problems first considered by Bertrand, and
later given the namc of ‘Bertrand’s Paradox’ by Poincaré. T shall
show, by means of the simplest possible example, the insuperable
difficulties which such problems present fo every form of the classical
theory of probability.

Consider the following simple problem: We are given a glass o,
taining a mixture of water and wine. All that is known abont:he
proportions of the liquids is that the mixture contains at Jeast as
much water as wine, and at most, twice as much water ag4vine. The
range for our assumptions concerning the ratio of water o wing is
thus the interval 1 to 2. Assuming that nothing morei§ Known about
the mixture, the indifference or symmetry princigh® or any other
similar form of the classical theory tells us tppdssume that equal
parts of this interval have equal probabilities. The probability of the
ratio lying between 1 and 1.5 is thus 30204/ and the other 5097
corresponds to the probability of the range”1.5 to 2.

But there is an alternative methgg!‘mbtlrg@m&ltgeoﬁgmﬁ problem.
Instead of the ratio water/wine, s¢ consider the mverse ratio,
wine/water; this we know Hes bet¥een 1/2 and 1. We are again told
to assumie that the two halvesof the total interval, Le., the intervals
1/2 to 3/4 and 3/4 10 1, have ‘equal probabilities (50 7 each); yet,
the wine/water ratio 3/4\1";{&1:.131 to the water/wine ratio 4/3. Thus,
according to our second calculation, 50 7o probability corresponds to
the water/wine range 4o 4/3 and the remaining 509 to the range
4/3 to 2. According 16 the first caleulation, the corresponding inter-
vals were | o732 and 312 1o 2, The two results are obviously
incompatiblel )

. Similar éontradictions may occhw in all cases where the character-
1stic attrfbutes (in our case the relative conceniration) are expressed
by sofiflnuous variables rather than by a discrete set of numbers (as
In‘the’case of a die or a lottery). I have already mentioned these so-
called ‘problems of geometrical probabiiity’, which owe their name
to the geometrical origin of most of the older problems in this class.
One of the oldest and best-known examples of geometrical proba-
bility is Buffon’s ncedic problem (1733).%5 A number of parallcl lines
are drawn_ on the floor and a needle is dropped on it at random.
The question is: What is the probability that the needle shall lie
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across one of the lines on the floor? The characteristic attribute of a
single throw s the position of the ncedle in relation to the system of
lines on the floor; it can be described by a set of numbers. called
co-ordinates. Certain values of the co-ordinates correspond to the
attribute ‘crossing’, other values to ‘noncrossing’. The origin of
possible contradictions in this case is exactly the same as in the
preceding one. They arisc from the fact that the results of the experi-
ments can be described by means of several different scts of co-
ordinates. The concentration of the mixture in the previous cxample
could be deseribed by the ratio wine/water as well as by the\fatio
waterfwine. In the case of the needle, we can use Cariésah co-
ordinates, polar co-ordinaics, or other sets of co-ordinads. Equal
probabilities for equal ranges in a certain co-ordinafc"sf?;tcrn corre-
spond, In general, to unequal probabilities for Cqu!»ra11§cs in another
possible co-ordinate system, and vice versa. R4
Any theory which starts from the notion of dgital possibilitics of a
number of different cases, supposed to be knewh a priori, or derived
by some kind of instinctive nsight, M3t Tnvariably fail when it
comes to problems of this kind. Keynes,\whom I have already men-
tioned as being onc of the leading sithjectivists. actually admits that
in these cases several different a&;ui'nptions are equally justifiable
even though the 'wlgﬁgbg_o quicég._g/t ci%pﬁlusions‘ The point f)[‘ view of
the frequency tficoly 15 %ﬁat i Ordef 1o solve probiems of this kind
(as well us any other problems) the distribution in the initial coltee-
tive must be given, The Source of this knowledge and the special
character of the distfibution have nothing 1o do with probability
caleufus. In order<fa obtain results in an actual casc which can be
expected to beceonfirmed by experiment, the initial data must be
taken from, sfalistical observations. In the case of the water/wine
mixture, jtGsyperhaps difficuli to give a reasonable delinition of the
collectivédnvolved: one would have to specify the actual procedure
by whieh mixtures with different concentrations are obtained. In the
case.of the needle problem, the way in which the collective is formed
,simore or less clear. A needle is thrown repeatedly, by means of an
N {irraqge_m}al_lt whose details remain to be defined, and the distribution
7 in this mtial collective, which is formed by the series of throws, is
ch.ar;ctenz_ed by a ‘probability density”, which may be given, in
principle, in terras of any co-ordinate system. Once this density
funcuor{ has been determined by actual experiment, all (urther
calculations must be based on it, and the final resulis are independent
of the choice of co-ordinates, which are nothing but a tool. The
problem belongs to the class of mixing® problems: all co-ordinate
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values corresponding to the crossing of a line by the needle are
‘mixed together and all the remaining values arc similarly ‘mixed”.
It may be possible to choose co-ordinates such that the initial distit-
bution is uniform in them. This may make the calculations easier:
it is, however, of no importance. Some choices of co-ordinates may
appear preferable from various points of view; none of them s
indicated by an inherent necessity, though empirical conditions may
influence our choice.

A SUGGESTED LINK BETWEEN THE CLAZSICAL AND 1HT
NEW DEFINITIONS OF PROBARBILITY .‘\

{

As we have seen, the cssential objections which can be, fajsed
against the classical definition of probability are twofold. Ogeehie one
hand, the definition is much too narrow; it includes olya”small
part of the actual applications and omis those problgwds which are
most important in practice, e.g., all those connected with insurance.
On the other hand, the classical definition pufs unduc emphasis on
the assuraption of equally possible events in (hé/initial collectives.
This assumption fails in all those cases of\gedmetrical’ probability
which were discussed in the ast few parggxaphs. )
Nothing worthy of mention_.‘as\j’g\;‘\\ﬁ%ﬁ[_gﬂ}f}]\\a‘.ﬂlg@é,-g_cmn brought
forward to meei the second objectiohw 1 think that this objection is
usuaily left unanswered through,;l«'izick of interest vather than on
positive grounds. As far as the\first objection is concerned, nearly
everybody who has followedfle traditional course in the theory of
probability will reply 1 the classical theory provides a fink con-
nacting the rwo definifionts of probability; that, owing to this link
the problems whichvere eliminated at the outset, such as those 0%
life insurance, magBedealt with; and that the results are satisfactory
at Jeast as far @8 Practical applications are concerned. This link is
supposedly’%}ﬂd in the Law of Large Numbers, which was first
suggested.t_)‘y crnoulii and Poisson, (We have already mentioned -iI
on a pivious occasion.) By means of this law, it can be proved
m&th?‘ghatically that probability values obtained as qumic.ms of the
nﬁm!ﬁer of favourable cases divided by the total number of ec Ll‘lll:’
possible cases, are, to a ceriain degree of approximation, e L!m; e
values obtained by the determination of relative frequenci’esqi o
longed series of observations. Many authors have already p?m]])fd
out the dangerous weakness of this link; nevertheless, it has been

. L, g he absence of anything whi ~iynl
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We shall have to examine this point closely later on, owing to the
general importance of the ‘Law of Large Numbers’ and the need of
it in all practical applications. Howcver, we postpone these delicate
considerations for the moment. Our fourth lecture will dea! exclu-
sively with the various aspects of this famous law. Meanwhilc,
anticipating some of the results of that discussion, we state: The
Law of Large Numbers, including its conscquences, does not relieve
us of the necessity of introducing probability as a limit of relative
frequency. In fact, the basic law derived by Bernoulli and Pajsson
loses its main importance and actually its meaning if we'«{o not
adopt the frequency definition of probability. Only through, hidden
errors of argument and circular reasonings can we arriviatthe idea
that this theorem inks’ the frequency definition with the definition
based on equally likely events, N

't ¥

o v
SUMMARY OF OBJECTIONS TO THE (II.A.;SS’IC.»‘\L DLEINITION

The second part of this lecture will bg\\a:discussiou of some new
contributions to the foundation of tffe theory of probabitity; but
before dealing with this, I would liketo' sum up bricfly the objections
I have raised against the classical definition of probability, based on
the notion of equally likely evenis.

1. Since ‘equally- PIRHRINGRE WMother exprossion for ‘equally
probable’, the classical ‘dfinition® means. at best. a reduction of
collectives with all kinds.of distributions to collectives with uniform
distributions, P\

2. Equally pogib‘rc cases do not always exist, e.g., they are not
present in thedgame with a biased die, or in life fnsurance. Strictly
speaking, the propositions of the classical theory arc thercfore not
applicable to these cases.

3 TQ@sfatement that ‘the six faces of an absolutel y homogencous
cube have equal probabilities” is devoid of content, unfcss whal we
mEan by ‘equal probabilities’ has previously been explained.

\.j e, Perfect homogeneity, in the logical sense of this phrase, does
~\JTOt exist in practice. If the process of manufacture of a die is com-
\/ p?etely known, it is always possible to find aspects in which the
different sides differ from cach olher.
.5. The ‘Principle of Indifference’ and similar concents are only
C{l'cumlocutions of the classieal theory. They avoid ‘none of its
difficulties,
6. I;:l the case of a continuous distribution, the assumption of
a ‘uniform distribution’ means something different in different
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co-ordinate systems, No general preseription for selecting ‘correct’
co-ofdinates con be piven, and there can therefore be no general
prefercice for one of the many possible nniform distributions.

7. The ‘Law of Large Numbers’, derived mathematically by
Bernoulli and Poisson, provides no link between the definition of
probability based on equally likely cases and the statistical results
derived from long series of observations. It does mnot alter our
postulate that the frequency definition is the starting point of the
whole theory of probability. This last assertion will be elaborated o™\
in the next lecture,

"N\
OBJECTIONS TO MY THEORY « M

Since my first publications which appeared in 19195an intensive
discussion of the foundations of the theory of probability has started
and is still in progress. Those authors who hadwworked in this
field for many years and had been syccessful\in'the solution of a
number of special problems could hardly Bg'expected to agree at
once to a complete revision of the veryfoundations of their work.
Apart from this older generation® fhere is scarcely a modern
mathematician who still adheres withgut reservation to the classical
theory of probability. The majorjiy, hajs syone o lesyascepted the
frequency definition. A small geoup, whom 1 call “nihilists’, insist
that basic definitions conngeting probability theory with the em-
pirical world are unnecessary: 1 will deal with this point of view at
the end of this lecture., ()

Even among thos& wlo agree that the subject of probability
calculus is frequengies and who think that this should find its expres-
sion in the definition of probability, there are still many differences
of opinion. Jalthe first place, there are some mathematicians who
begin. theirsgaurse by defining probability as the limit of relative
frequeneyyBut do not adhere consistently to this point of view in
their further developments. Instead, they revert to the old ways of
the-glassical theory, The French textbook by Fréchet and Halbwachs
(1924),11 and that by the Amcrican mathematician Julian Coolidge
(1925),%% belong to this group.

A more recent work by Harald Cramér,’? which scems to represent
the prevalent trend among American and British statisticians, com-
petely adopts the point of view of the frequency definition. Cramér
rejects the definition based on equally possible cases as inadequate
and firmly opposes the standpoint of the modern subjectivists which
will be further discussed later on. However, Cramér omits giving a
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clear definition of probability and in no way explains or derives in
a logical manner the elementary operations of probabilily calculus.
The reason why he and auathors of the same school of thought are able
to proceed in this way is that, for all of them, the fundamental ques-
tions which arise from the simple problems of the theory of chance do
not exist, If one’s attention is focused on the mathematical difficulties
of complicated problems it is casily possible to pass over the diffi-
culties of the fundamentals. The same holds true in the case of pure
mathematics: the mathematician who is conceniraling on the soly-
tion of intricate problems need not concern himself with\the
proposition that a times & equals b times a. The significant diffarence
is that in this field scientific discipline is much further adyapeed and
it is therefore no longer customary to deal with the foyndations in
a few casual words. "G

Another small group of mathematicians is oppésed to the defini-
tion of the collective as an infinitc sequence of ements; they prefer
to deal exclusively with frequencies in long\but finite, scquences,
i.e., to avoid the use of limits. A larger grofipficcepts my first postu-
late, viz., the existence of limiting valugs\ef rclative frequencies, but
finds difficulties with the second onethe postulate of randommness.
Certain suggestions concerning thgpossible alteration of these con-
dltiorfs have be\ﬁ{},ﬂ&g&diﬁﬁgpﬁ%‘}éﬁndea} with these qucstipns in
turn in the following sections,“includmg also a brief discussion of
new developments in the subjective concept of probability.

A
¢ <«F§NITE COLLECTIVES

There is no dowtht about the fuct that the sequences of observations
to which the heory of probability is applied in practice are all
finite. In tHedsame way, we apply in practice the mechanics of
particles.i¢the treatment of problems concerned with bodies of
finite 8ize’ which are not geometrical points. Ncvertheless, nobody
wle}fde y the uiility and theorctical importance of the abstraction
Anderlying the concept of a material point, and this despite the fact

"\ What we now have theories of mechanies which are not based on the
’conmde_ra_tion of discrete points. On the other hand, abstractions
that originally belonged to the mechanics of particles permeale far
hmto the mechanics of finite bodies. We need not enter into details

ere.

It _is d01_1bt1ess possible to avoid the notion of infinite sequences in
dealing with mass phenomena or repetitive events. The question is,
what would be the results of such a method? T do not know of any

82



DISCUSSTON OF THE FOUNDATION OF PROBABILITY

argument for using inflnile sequences, apart from the greater
simplicity of this method, and I have never claimed for it any other
advantages. In 1934, Johannes Blume™ set himself the task of trans-
forming my theory in such a way as to use only finite sequences of
observations, especially in the fundamental defmitions. His pro-
cedure is this: Instead of the postulate concerning the Iimits of the
relative frequencies, he assumes the existence of certain fixed
aumbers determining the distribution of the collective, and postulates
that the values of the actual relative frequencics should differ fromm,
these numbers by no more than a small positive magnitude e, S
suming that ¢ is sufficiently small, it is possible to perform cetthin
operations on these finite collectives, constantly remaining wi ithin the
limits of an approximation defined by the magnitude ¢. As faras this
method actually goes, it amounts 1o nothing more thah, a)circum-
scription of the concept of a limiting value, which{ibay be quite
useful for certain purposes. This has been stregsed Jalrcady by A.
Kolmogoroff?? in his review of Blumo's work. Thévword ‘limit’ is in
fact used in mathematics only as a concise way“of making ceriain
statements concerning smail deviations, On3he other hand, neither
Blume nor other authors working in thédsame direction have so far
been successful in describing in the language of the ‘“finite’ theory all
propertics of a collective and ali, eauBexinnsmhatyoen.ivollectives,
especially those relating to the @uinciple of randomness. At the
present time, therefore, | do nge think that we can speak of the
actual existence of a theoey of probability based on finite
coliectives, 18 -

Here I should like t%ﬁg‘ss’rt an historical interpoiation. The philo-
sopher Theodor Fechnér,? who had many-sided interests, created,
under tie name of ‘Rellcktivimassi ehre’, a kind of systematic descrip-
lion of finite seqlences of obscrvations, which he called ‘finite
populations’ (Rigtlektivgegenstiinde). This work was edited by Lipps
in 1897, afigr the death of the author. Fechner probably did not
think of,ﬂ?h%uossibﬂity of arriving at a rationul concept of probability
from sueh'an abstraction us his “finite population’, but his views have
seryedy at least for mo, as a stimulus in developing the new concept
Of probability.

Retoruing to our subject, I must defend myself most emphatically
against the recurring misunderstanding that in our theory infinite
sequences are always substituted for fnite sequences of observations.
This is of course false, In an example discussed at the end of the
preceding lecture, we spoke of the gi‘oup of twenty-four throws of a
pair of dice. Such a Eroup can serve as the subject of our theory, if
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1t Is assumed that it has been repeated, as a whole, an infirite number
of times and in this way has become an element of 4 colleciive. This
leads us to certain statements about probability rhat apply to a
Jinite number of observations, in this example, twenty-four. Similarly,
if we consider, for instance, the birth rate of boys in a hundred
different towns, our theory shows what can be expected, on the
average, in the case of this finite number (1 = 100) of obscrvations.
There is no question of substituting an infinile sequence for each
group of 100 observations. This point will be discussed in gibater
detail in the fifth lecture of this series, which will be concepned ‘with
the problems of statistics. )

"N
N

TESTING PROBABILITY STATEMENTS:

The problem of formulating a theory of Ii;qife"colleclivcs, in the
sense explained above, must be clearly distinguished from that of the
actual interpretation of the results of our probability calculations.
Since we consider that the sole purpogeof a scientific theory is to
provide a mental image of objectiyelyy bbservable phenomena, the
only test of such a theory is the extent to which it applics to actual
sequences of observations, and thikse are always {inite.

01.1 the othcr“p“z’t‘n\!(_l b%_lhalyg‘%}?;gogm on many occasions that all
the results of olif ¢4 culaa[mns Iéad To statements which apply only
to Infinite sequences. Eyer®if the subject of our investigation is 4
sequence of observatigps of a certain given length, say 500 individual
Fl"lalﬁ‘:: we actually treat this whole group as one clement of an
mﬁm_tq Sequence. Consequently, the results apply only to the infinite
repetition of gequences of 500 observations each. It might thus
appear that our theory could never be tested experimentally.

_ This diffictlty, however, is exactly the same as that which occurs

in all applications of science, I, for instance, a physical or a chemical

co erat@on leads us to the conclusion that the specific weight of a
31%]?'3?311‘3@ 15 0.897, we may try to test the accuracy of this conclusion

_ by direct weighing, or by some other physical experiment. However,
) the weight of only a finife volume of the substance can be determined
in jrhls way. The value of the specific weight, i.e., the limit of the
ran_wEalght/volume for an infinitely small volume, remains un-
certain just as the value of a probability derived from the relative
frequeqcy In a finite sequence of observations remains uncertain.
Or_le might even go so far as to say that specific weight does not
exist at all, because the atomic theory of matter makes impossible
the transition to the limit of an inﬁnitely small homogeneous volume.
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As a parallel to this difficulty we may consider, for instance, the fact
that it is impossible to make an infinitely long sequence of throws
with one and the same die, under unchanged conditions, because of
the gradual wear of the die.

Ono could say that, after all, not all physical statements concern
limits, for instance, that the indication of the weight of a certain
finite volume of matter is likewise & physical statement. However, as
soon as we begin to think about a really exact test of such a state-
ment, we run info a number of conditions which cannot even b\
formulated in an exact way. For instance, the weighing has tg be
catried out under a known air pressure, and this notion of Wir
pressure is in turn founded on the concept of a Jimit. An expéticnced
physicist knows how to define conditions under which ane experi-
mental test can be considered as “valid', but it js impossible to give a
logically complete description of all these conditiény in a form
comparable, for instance, to that in which the peefhises of a mathe-
matical proposition are stated. The assumption d0the correctness of
a theory is based, as H. Dubislav justly stafés,”not so much on a
logical conclusion (Schluss) as on a practi’ca}decision {Entschluss).

T quite agree with the view which CarP@¥Hempel®® put forward in
his very clearly written article on_tTHc Content of Probability
Statements’. According to Hempel,Sthe results of a theory based on
the notion of the infinite collectivé géqﬁsbé ?1[}1)}') ted 1o fitiite sequences
of observations in a way whieh"is not logically definable, but is
nevertheless sufficiently exaéfNn practice. The relation of theory to
observation is in this cagq’es\sentially the same as in all other physical
scicnces. N\

Considerations of\this kind are often described as inquiries into
the ‘problem of application’, Tt is, however, very definitely advisable
to avoid the infroduction of a *problem of applicability’, in addition
to the two 'p‘ro\bfems, the observations and their theory. There is no
special t;hg'ofy, i.e., a system of propositions, deductions, proofs,
cte., that deals with the question of how a scientific theory is to be
applied to the actual observations. The connexion between the om-
’pirfcﬁi world and theory is established in cach case by the funda-
mental prineiples of the particular theory, which are usually called
its axioms. This remark is of special importance to us because
occasional attempis have been made to assign to the theory of
probability the role of such a general ‘application theory’. This
conception fails at once when we realize that a new problem of
application would arise in connexion with each single statement of
the calculus of probability.
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AN OBJECTION TO THE FIRST POSTULATF

The majority of mathematicians now agree that the conecept of an
mfinite sequence of observations or attributes is an appropriate
foundation for a rational theory of probability, A certain objection.
resulting from a vague recollection of the classical theory, is raised.
however, by many who hear for the first time the definition of prob-
ability as the limiting value of the rclative frequeney. T will discuss
this objection briefly, although it does not stand close examindtion;
it belongs logically to the problems which T am going to digciiss in
my next lecture dealing with the Laws of Large Numbers, ™)

The objection® refers in fact 1o the text of the the@eem of Ber-
noulli and Poisson which T have mentioned previoughwi According to
this proposition, it is ‘almost certain’ that the relavive frequeney of
even numbers in a very long sequence of theows, with a correct die
will Tie near to the probability value 1/2. Netcrtheless, a certain small
probability exists that this relative fl'equc:;@? will differ slightly from
0.5; it may be equal te 0.51, for instandé,even if the sequence is a
very long one. This is said to confradict the assumption that the
limiting value of the relative frequengy s exactly equai to 0.5.

In other words, so runs the objeetion, the frcquenc_v theory implies
that, with 4 sufficient increase in the leagth of the sequence of
observations, the AHTSRIRBIBEANRSF 8 obsarved relative frequency
and the value 0.5 will certdinly (and not afnost certainly) become
smaller than any givém small fraction; there is no room for the
deviation 0.01 fromithe value 0.50 occurring with a finite, although
sgnall, probabﬂjtj\-\ ven in a sufﬁciently long scquence of observa-
tions, O
This objestion is based on nothing but an inexact wording and
may be gasity disposed of. The above-mentioned law does say Some-
thing abdtt the proba.bility of a certain value of relative frequency
chési“ng in a group of n experiments. We therefore have 10 know

wﬁat probability means if we are to interpret the statement. Accord-
L. (Ing to our definition, the whole group of n conseculive throws has
{ ™ to_be considered as one element in a collective, in the same way as
this wasbd.one before with groups of four and of twenty-four throws.
_ The attribute in the callective which we now co nsider is the frequency
of the attribute ‘even’ in a group of n throws. Letuscall this frequency
X. It can have one of the  + | values, 0, 1/n, 2in, . . . 1o nin = 1.
If “even’ appears m times in a serics of » throws, the attribute
1§ the fractllou * = mjn. Bach of these 12 + 1 different valucs of x
has a certain probability. The probability that x has a value greater
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than 0.51 may be, for example, 0.00001. According to our theory.
ihis means that if we repeat these sefs of # throws an infisite number
of times, we shall find that, on the average, 1 in 100,000 of these sets
contains more than 51% even results. The frequency which is con-
sidered in this example is that in a finite set of # casts and is obtained
by the division of the m even numbers in the set by the fixed iotal
iumber n of throws.

On the other hand, when defining the probability of ‘even’ we

consider a relative frequency of a different kind. In fact, we consider,

the whole sequence of all cxperiments, without dividing it into sets
of n, and count the number of cven numbers from the b\eovmmpcp af
the sequence. If N throws have been made altogether, ang~J¥ ‘of
them have given ‘even’ results, the guotient leN is the frefrtency
considered, and we assume that this fraction, in wluch Both the
denominator and the numerator increase indefinitely{’tends to a
constant Jimiting value. In our case this value wenl be 1/2. No
immediale connexion exists beiween the two propesitions of which
one postulates the existence of & limiting valug; Q\f‘thc ratic Ny/N, for
N tending to infinity, and the other stateg ﬂ‘re Yecurrence of certain
sets of the gwcn fixed length 7 which exhiigitan unusual value of the
frequency mfa. There is tht,refore no CQﬂllEldlCthI‘l belween the two
statements. The idea of such a qgg,guﬁfgmbggpgdgpgh] arise from
an incomplete and inexact formuylafion of the problem. One of the
purposes of our next lecture williBe to inquire more closcly into the
relation between these two,Statements, and we shall find not only
that they are reconcilablebut that the Law of Large Numbers
acquires its proper ser\ sanid full importance only by being based on
the frequency de finfhion*of probability.
PN
OBIECTIGNS TO THE CONDITION OF RANDOMNESS

1 shall\foW consider the objections which have been raised to
my seqégﬁ condition, that of ramdomness. Let us resiate the
problétn. We consider an infinite sequence of zeros and ones,
IRNS the successive outcomes of a simple aliernative. We say that
Xposscsse: the property of randomness if the relative frequency of
I's (and therefore also that of 0's) tends to a certain limiting value
which remains unchanged by the omission of a certain number of
the elements and the construction of a new seguence from those
which are left. The selection must be a so-called place selection,
Le,, it must be made by means of a formula which states which ele-
Tments in the original sequence are to be selected and retained and
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which discarded. This formula must leave an infinite number of
retained elements and it must not use the attributes ol the sclecied
elements, i.e., the fate of an element must not be affected by the vatue
of its attribute.

Examples of place sclection are: the sclection of each third element
in the sequence; the sclection of each clement whose place number,
less 2, is the square of a prime number; or the selection of each
number standing three places behind one whose atiribute was 0.

The principle of randomncess expresses a well-known propefty of
games of chance, namely, the fact that the chances of winnilg or
losing in a long series of games, e.g., of roulette, arc indgpeddent of
the system of gambling adopted. Betting on ‘black’ ifi ach game
gives the same result, in the long run, as doing seir every Lhird
game, or after ‘black’ has appearcd five times jm succession, and
s0 on. ~\

In my first publication in 1919 (see autesbibliogr. note), 1 gave
much space to the discussion of the conceptyof randomness. Among
other propositions, T derived the fol]ow‘ng\"fheorcm 5': A collective
is completely determined by the digtfibution, i.c., by the (limits of
the) relative frequencies for each alt:ributc; it is however impossible
to specify which elements have sich attributes.” In the discussion
of this proposition, Idsai_d Hgﬂi&;’r that “the exisience of a colfective
canmot be prove‘ﬁ"ﬁ‘?'nkféaaﬁs{o e adtual analytical construction of
a collective in a way shmilay, for example, to the proof of existence
of continuous but nofhere differentiable functions, a proof which
consists in actually @kiting down such a function. In the case of the
collective, we m'@s:\be satisfied with its abstract “logical™ existence.
The proof of j[hjs “existence™ is that i is possible to operate with the
concept of\aCollective without contradictions arising.’

Today,lwould perhaps express this thought in different words, but
the esgential point remains; A sequence of zeros and ones which satis-
ﬁe?i. rineiple of randommness cannot be described by a formula or
by arule such as: “Fach clement whose place number is divisible by 3
o~has the attribute 1; all the others the attribute 0°; or ‘All elements

\with place numbers equal to squares of prime numbers plus 2 have

the attribute 1, all others the attribute 0°; and so on. If a coliective
could be described by such a formula, then, using the same formula
for a place selection, we could select a sequence consisting of 18
{or 0's) only. The relative frequency of the attribute 1 in this selected
sequence would have the limiting value 1, i.c., a yalue different fron:
that of the same attribute in the initial cbmp]etc sequence,

Itis to this consideration, namely, to the impossibility of explicitly
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describing the succession of attributes in a collective by means of a
formula that critics of the randomness principle attach their argu-
ments, Reduced to its simplest form, the objection which we shall
have to discuss first asserts that sequences which conform to the
condition of randomness do not exist. Here, ‘nonexistent’ is equiva-
lent to “incapable of representation by a formula or rule’.

A variant of this objection counters the joint use of the second
with the first axiom, that of randomness with that of limiting values.
The argument runs, roughly, as follows. .

The existence or nonexistence of limiting values of the frequencies
of numbers composing a sequence, say 1’s and 0's, can be proved
only if this sequence conforms to a rule or formula. Since, howevet,
in a sequence fulfilling the condition of randomness the suceession
of attributes never conforms to a rule, it is meaningless {0"3peak of

Hmiting values in sequences of this kind. ¢

s\

RESTRICTED RA NDDMNES\i \

One way to avoid all these difficulties w&yi& seem L0 coilsist in
effectively restricting the postulatc of fandbmness. Instead of re-
quiring that the limiting value of the relative frequency remain un-
changed for every place selection, onelmay consider only a predeter-
mined definite group of place selwdig torraulibrary.orgin

In the cxample which we digéussed at the end of the sccond
lecture, we made use of a frequently recurring, typical place selection.
Starting with an infinite sefjuence of elements, we first selected the

Ist, 5¢th, Sth, 13th, . .~.1{16rhents; then the elements numbered 2, &,
10, 4, . . .; fo]lowinéthis, the numbers 3, 7, 11, 15, . . .; and
finally 4, 8, 12, 16,/ . We assumed that in each of these partial

sequences the limifing frequencics of the various attributes were the
same as in theoriginal sequence, and furthermore that the four
partial seqieces were ‘independent’ in the sense required for the
operatiof“of combination, i.c., that the limiting frequencies in the
new sequences which are formed by combination and whose attri-
butés yare four-dimensional could be computed according to the
Sitaple rule of multiplication. The same reasoning holds true if instead
of the valuc # = 4 we consider any other integral value for 2, such as
n =24, or n = 400. A sequence of clements which has the above-
described property for every n is today generally called a Bernoulli
sequence. The American mathematician A. H. Copeland® and fater
on myself,? in a simpler way, have shown how it is actually possible
to construct Bernoulli sequences. By following explicitly prescribed
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rules, one can form an infinite sequence of 0°s and (s which satisfies
the above-stated conditions for every #1.

Copeland has also shown that Bernoull; sequences have other
intercsting propertics. If a partial sequence is formed out of those
clements which follow a predetermined group of results, e.g.. a group
of five elements consisting of four s with a 0 in the middle, then in
such a sequence the limiting frequency of the [ (and of course also
of the 0) will remain unchanged. We may therefore suy that Bernoull
sequences are thosc without aftereffects. This property s catfed
‘frecdom from aftercffect’. .

Thesc facts seem to indicate that it might be suilicient @hakguire
that a collective should he of the Bernoulli type. Since itdS)dxplicitly
possible to construct Bernoulli sequences, this restricgidnswould dis-
pose of all arguments against the existence of sugytollectives, Let
us, however, consider what we would lose by i resiricting the
condition of randomness. W

Whereas we would undoubtedly bhe able Lo deal with questions of
the type of the problem of the Chevalicp @ Méré, discussed in the
preceding lecture, and would be able mﬁmmeed in the samc way,
there is, on the other hand. no dovht Wt a number of other mean-
ingfut questions would now remaigymanswered. What happens, for
instance, if a player decides. at,flia beginning. that he will consider
only the first, scoomwel; dhirdil (FW6ORmIN, eleventh. . | . casts of the
die, that is to say, on ly those'whose order number is o prine number”?
Will this change his chances of winning or not? Wil the same rule
of combination hold¢tyue in the scquence obtained through the
place selection by fihne numbers ?

If, insiead of esfricting ourselves (o Bernoulli sequelces, we con-
sider some diﬁ'g'reﬁtly defined class of sequences, we do not improve
the state of affairs. Tn every case it will be possible to indicate place
selections. which will fal} outside the framework of the class of
Sequen‘s@s which we have selecied. It is not possible to build a theory
of ym}ability on the assumplion that the limitine valucs of the
relative frequencies should remain unchanged only for a certain

~geoup of place sclections, predetermined once and for all. All the
éamc,l we shall see that the consideration of sequences such as Ber-
noulli sequences and others, which satisfy conditions of restricted

random_ncss, will prove valuable in solvin g certain questions in which
we aie interested.
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MEANTNG OF THE CONDITION OF RANDOMNESS

In our theory of probability we have given first place to the
preposition that in the sequence of observations under consideration
the relative frequency of each attribute has a limiting value indepen-
dent of any place selection. Let us review once more what we mean
by this postulate. To be sure, it is not possible to prove it. Even if it
were possible to form infinite series of observations, we would not
be able to test any onc of them for its insensitivity against a// place,
selections, if for no other reason, because we are not in a position
1o enumerate all place selections. The axioms of science are (nbf
statemnents of facts. They are rules which single out the classds of
problems to which they apply and determine how we are to\pioceed
i the theoretical consideration of these problems. If&we) say in
classical mechanics that the mass of a solid body remainsinchanged
in time, then all we mean is that, in every individua! problem of
mechanics concerned with solid bodies, it will b&vassumed that a
definjte positive number can be attributed tg,“th\c body under con-
sideration; this number will be called its_mdss“and will figure as a
constant in all calculations, Whether this‘l‘,s ‘correct’ or not can be
tested only by checking whether the, predictions concerning the
behaviour of the body made on the basigh fsu?,h calculations coincide
with observations. Another reasB¥¥WSPISEY BE Miom of a
constant mass would be, of coufbe, that it presented a logical con-
tradiction with other assumptions. This, however, would merely
imply that calculations basedhon all assumptions together would lead
to mutualily co.ntradict(ﬁrg predictions.

Let us now see what kind of preseriptions follow from the axiom
of randomness. Aftgr.all that has been said in the first and second
tectures, it can ghl§-be this: We agree to assume that in problems of
probability cadults, that is, in deriving new collectives from known
ones, the \e'f“é'ﬁ\-'e frequencies of the atiributes remain unchanged
whenever(atty of the sequences has been subjecled to one or more
place selections, We do not ask, at this moment, whether such an
assufiption is appropriate, i.e., whether it will lead us to useful
fesults. All we ask now is whether this procedure may cause contra-
dictions. This question can be answered clearly, as I shall show
below. But first, I must insert some words of explanation introducing
an important mathematical concepr,

A quantity which cannot be expressed by a munber, in the usual
sense of the word, is said to be infinite, However, following Georg
Cantor, the great founder of the theory of sets, modern mathematics
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distingnishes between several kinds of infinity, I shall assume as
known what is meant by the infinite sequence of natural numbers.
If it is possible to establish a one-to-one correspondence between the
elements of a given infinilc set and the natural numbers, then we say
that the set considered is enumecrable or enumerably infinite. Tn
other words, an infinite sct is said to be cnumerable whencver it is
possible to number all its elements. The set of all numbers which
represent squares of integers and also the set of all fractions having
integers as numerators and denominators are enumerably . igfigite.
On the other hand, the set of all numbers lying between fwd fixed
limits, say, between 1 and 2, or the set of all points in a giyen/interval
are not enumerable. At least, it has not yet becn possible 1o devise
& theory of the set of points in an interval which would not use some
other essential concept besides that of cnumeragign. The set of all
points in an interval is said to be ‘nonenumerabic™or, morc specific-
ally, ‘continuously infinite’. This distinction\between enumerable and
continuously infinite sets is of the greatest importance in many
problems of mathematics. Using this cancept, we will explain the
present stage of our knowledge with rcﬁject to the consistency of the
axiom of randomness, o)

«)

CONSIIL RN EBY a QIHY 4 RPOMNESS AXIOM

During the last twenty*¥ears, a number of mathematicians have
worked on this ques{i’on. I name here in particular, K. Dérge,*
A. H. Copeland, A)'Wzld,** and W. Feller.2’ Although both the
starting points ahdvthe aims of their respective investigations vary,
all of them ghequivocally bring out this same result: Given a
sequence of @ttributes, the assumption that the Iimits of the relative
frequen?i{&'of the various attributes are insensitive to any finite or
enumerably infinite set of place selections cannot lead to a con-
trad}\slinn ina theory based on this assu mption. Tt is nol necessary
'EO}.\SPCCify the type or properiies of the place selections under con-

u\’.sideration‘ It can be shown that, whatever enumerably infinite
wset of place selections is used, there cxist sequences of attributes

which satisfy the postulate of in sensitivity. It can even be stated that
‘almost all’ (and this expression has a precise meaning which I
cannot go into here) sequences of attributes have the required
property. This last statement implies that collectives are in a sense
‘the rule’, whereas lawfully ordered sequences are ‘the exception’,
which is not surprising from our point of view.

U know of no problem in probability in which a sequence of
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attributes is subjected to more than an enumerably infinite number
of place selections, and T do not know whether this is even possible.
Rather, it might be in the spirit of modern logic to maintain that the
total number of all the place selections which can be indicated is
enumerabic, Morcover, it has in no way been proved that if a prob-
lem should require the application of a continuously infinite number
of place selections this would lead to a contradiction. This last
question is stiil an open one.

But whatever the answer may be, from what we know so far, it is
certain that the probability calculus, founded on the notion of the
collective, will not lead to logical inconsistencies in any applicatign
of the theory known today, Therefore, whoever wishes to rejéefor
to modily my theory cannot give as his reason that the theary is

‘mathematically unsound’. N

at ¥

< &

A PROBLEM OF TERMINOLOGY.%W )

I must now say a few words about anothef\question, which is
solely onc of terminology. Tt has sometiés” been said that a
deficiency of my theory consists in the €X¢lption of certain purely
mathematical problems connected with the existence of limiting
values of relative frequencies in @e\%e@gﬁu@ﬁgwf@g‘jiﬁieﬁned by
formulz. 1t is not my intention tgexclude anything. 1"have merely
introduced a rew name, that of akollective, for sequences satisfying
the criterion of randomness. Lahiitk further that it is reasonable to use
the word “probability’ only it ednnexion with the relative £ requencies
of attributes in sequepges,bf this special kind. My purpose is to
devise a uniform termﬁvblogy for all investigations concerning the
problems of games &fychance and similar sequences of phenomena,
It is open Lo eyedgéne to use the term ‘probability’ with a more
general meanimg’e.g., to say that in going through the natural
sequence of siymbers the probability of encountering an even number
is 1/2. It\i\%ll; however, then be up to him to explain the difference
existing,\from his point of view, between, say, the natural sequence
of integers and the sequence of the results of ‘odd’ and ‘even’ in a
gameé”of dice. This problem is not solved by a change in termin-
ology.

Neither am T willing to concede that a theory is more general or
superior because it is based on some notion of ‘lmited rand omness’,
and therefore includes a greater varicty of sequences. There still
remains the essential difficulty of indicating the characteristics by
which sequences such as those formed by the successive results of a
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game of chance differ from others, On the other hand, « probability
theory which does not even try (o define the boundarics of this
special ficld, far from being superior to mine, fails, in my opinion, to
fulfil the most legitimate demands.

Lintend to show Tater, by certain examples, how sequences which
do not possess the propertics of collectives can be derived from
coliectives (in my sense) by meuns of operations which do not belong
to the system of the four fundamental operations discussed above,
In so far as sequences of this kind are of practical interestfe.g.,
certain so-called ‘probability chains’), they belong within tiiframe-
work of my theory; but 1 do not see any harm in denying\le name
‘probabilities” to the limiting values of the relative {réguencies in
such sequences. In my opinion, it is both convenjehil and useful to
call these values simply limiting frequencies’. orag¥ have suggested
earlier, to use a word such as ‘chance’, Of colsa. there is o logical
need for this cautious use of the word probahility; it is quite possible
that, once the frequency theory has be’al"l\\ﬁ’t‘ml'\f established, more
freedom can be allowed in the use of, L. férms.

X

OBJECTIONS TO THEGRREQUENCY CONCEDT

As T have mentioned Ere,\zio';f_sl\eg the frequency theory of proba-
bility has today"Badh! RESHRT By ARilOst all mathematicians inter-
ested in the caleulus of,"probability or in statistics, This is usually
expressed by the phedse’ that probability means an ‘idealized fre-
quency’ in a long séquence of similar observations. T believe that by
introducing theynodtion of the collective T have shown how this
‘idealization’ jg'ebtained and how it leads o the usual propositions
and operalidgs’of probability calculus.
On the/diter hand, there have been in the past and there still are
a fe\:&?@ﬁbrs who recoramend applying the theory of probability in
case$'which in no way deal with frequencies and mass obscrvations.
Tegite an older example: Eduard v. Hartmann, in the introduction
(10 his Philosophy of the Unconscious (1869). derives mathematical
9 formule for the probability of natural events being due to spiritual
Causes, and finds it to be equal to 0.5904. [ have earlier mentioned
the economist John Maynard Keynes,® a persistent subjectivist.
According to his opinion, probability ceases to be a trustworthy
guide in life if the frequency conecept is adopled. It seems to me that
_1f somebody intends to marry and wanls to find out ‘scientifically’
if his choice will probably be successful, then he can be helped.
Pperhaps, by psychology, physiology, eugenics, or sociology, but
%4
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surely not by a science which centres around the word ‘probable’.
The point of view of the geophysicist Harold Jeffreys® is similar to
that of Keynes. In his book Scientific Inference (1931), he goes cven
further and says that any probability, in the widest sense of the
word, can be expressed by a number. If. for example, a newborn
child has seen only blue and red objects so far in his life, there exists
for this child a numerical probability of the next colour being yellow:
this probability, hewever, is not supposed to be determined in any
way by statistical observalions. Other arguments of the subjectivists
have been presented earlier in connexion with the question ,of
equally possible cases, (NN

In recent years, the Keynes-Jeffrey point of view has found 5ome
support; cfforts have been made to construct a rigorous, system of
subjeetive probability, Let us briefty describe these attempts.

4

N

THEORY OF THE PLAUSIBRILITY OF STATEMENTS

To an interesting paper (1941), the mathema,til;‘i\\ah G. Polya® takes
as his starting point the following histowical fact, Referring to a
proposition concerning an unproved property of integers, Euler
stated that this proposition was ‘prebably correct’, since it was
valid for the num_bfers 1 to 40 as ws\:_‘ttlwaé _g}]r_gl&%lﬁgpﬁglsg!&l and 30‘1.
Even though such inductive reasqning is not othcrwise customary in
mathematics, or perhaps just beeause of this fact, Polya considers
this argument worthy of fupther investigation. He proposcs that in
such instances one might(Speak of “plausibility’ instead of proba-
bility. We are quite willing from our point of view to accept this
terminological suggestion. Pélya arrives essentially at the following
conclusions: (1) T arc objective rules, ie., rules accepted by afl,
on how to judge(plausibility; e.g., if the nuniber of known instances
which suppoxt &"proposition is increased, the plausibility increases;
if an hypothess on which the proposition could be founded is shown
to be inoderect, the plausibility is decreased. (2) A humerically non-
determindble (igure, between 0 and 1, corresponds to every plausi-
bilityn(3) The formula of the caleulus of probability are qualitatively
applicable to plausibility considerations.

The first of the above conclusions, namely, that there are generally
aceepted rules for judging plausibility, will not be contended. What
is meant by mathematical formule being qualitatively applicable is
not quite clear to me, Perhaps this means that merely statements of
inequalities and not of equalities can be made, though cven that
much would require that the plausibilities could be ordered in a
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sequence such as that of the real numbers. But my main objection
to Pélya’s plausibility theory is the following:

The plausibility of Euler's Theorem does not rest exclusively, or
even essentially, on his forty-two particular instances. If it did, we
might state equally well that all numbers of the decimal sysiem could
be represented by at most three digits, or that no number is the
product of more than six prime numbers. The essential, or at least
an esseniial, reason for the plausibility of Euler’s theorem lics in the
fact that it does not contradict any well-known and casily ghvocked
property of the intesers. Moreover, il we pay attentign ¥ this
theorem we do so becausc it was formulated by Euler afidAve know
that he had a comprehensive knowledge of the theofy b numbers,
How are we to weigh these facts in judging the plaustbility in ques-
tion ? Should we then count the number of properdies which a theorem
does not contradict? Would we have to conclude that plausibility
will increase with every new property withowhich the theorem does
not conflict? A

As I have stated, Polya does not att IhEt to express the plausibility
of a statement by a definite numbe{Other authors are less reserved.
R. Carnap,*® who belonged to th&¥ienna Circle ol Logical Positiv-
ism, now supports a theory of¥inductive logic’ where he uses the
expression ‘probability, 17 fakhe plagsibility of a judement. whereas
the idealized frequency fsicalled ‘probability 2°. Both of these are
said to follow the uswal rules of probability calculus. In Carnap’s
opinion, the differefice between Jeffrey’s view and mine consists in
the fact that %of us talks of ‘probability 1' and the other of
‘probability 2. Within the framework of (heory 1. Carnap formu-
fates the follasing proposition: On the basis of loday's meteoro-
logical dagay the probability that it will rain tomorrow js 0.20.
Howey®r“the value 0.20, in this statement, is not altributed to to-
mer{OW’'s rain but to a definite logical relationship between the
prediction of rain and the meteorological data, This rclationship

Abeing a logical one . . . does not require any verification by observa-
) tion of tomorrow’s weather or any other obscrvation.” Carnap does

not state how the figure 0.20 is to be derived from the 1'neteomlogica|
datfl. No meteorologist would fail 1o say that such a deduction is
Ult_lmately‘ based on statistical experience. This, howcver, would
!31'“_18 us right back to probability 2. Carnap’s theory would nced to
indicate how, by starting with propositions expressing the meteoro-
logical data, we arrive, by means of logical opcralion;._ at the figure
?h?s[} (or any other figure). His theory 15, however, unable to show
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The same unbridgeable gap exists in other systems which seek to
defiue ‘a purely logical notion of the plausibility of an hypothesis on
the basis of given facts’, using in an elaborate way the formal tools
of symbolic logic and Jarge doses of mathematics. C. G. Hempel and
P. Oppenheim,® who attempted to do this, had to resort in the end
to the admission of statistical observations as an essential basis, thus
recognizing that mass phenomena and repetitive events are actually
the subject of their theory. 1 certainly do not wish to contest the
usefulness of logical investigations, but I do not see why onc cannot
admit to begin with that any numerical statements about a proba-
bility 1, about plausibility, degree of confirmation, etc., are actualiy)
statements about relative frequencies. . \

7 %G
S

THE NIHTLISTS '€

Finally, it is necessary to say a few words about thdse contempor-
ary mathematicians who profess, more or less explicitly, that there
is no need to give any definition or explanatih of the notion of
probability: What probability is, everybody ;T‘éo“*s who uses every-
day language; and the task of the theorf of probability is only to
determine the cxact values of these prebabilities in different special
cases. Such mathematicians completely mi 51 he meaning
of exact science. I think that 1 115‘\‘;; ’Eiﬁﬁd%gggi%%ﬁ%ﬂg%ﬁst lecture
all that need be said about this qhestion. ft is cssentially true that,
historically, such a conceptiginforms the starting point of scientific
development. All theories drise primarily from the wish to find
relations between certaifihotions whose meaning seems to be firmly
established. Tn the c;o’urse of such investigations, it is often found
that not every notiégfor which the usual language has a word is an
appropriate basis.for theoretical deductions. In all fields in which
scicnce has watked for a sufficiently long time, a number of new
artificial miiheoretical concepts have been created. We know that
this progess is an esscntial part of scientific progress. Everywhere,
from the most abstract parts of mathematics to the experimental
pliysicdl scicnces, in so far as they arc treated theoretically, the exact
defifition of concepts is a nceessary step which precedes the state-
ment of propositions or goes parallel to it.

We may find an example in the modern development of physics.
In the whole history of theoretical physics until the beginning of the
present century, the notion of two simultaneous events occurring at
two different points was considered to be self-evident and in no need
of further explanation, Today, every physicist knows, as an essential
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consequence of Einstein’s special theovy of relativity, thal the notion
of simultaneity requires a definition. A whole theory springs from
this definition which is generally considered one of the most fruitful
developments of modern physics. This theory must be simply non-
existent for all who think that we know the meaning of simultaneity
anyhow, i.c. ‘from the usual sensc of the word’.%

I think therefore that the refulation of those who consider every
definition of probability to be superfluous can be lzft to {ollow its
natural course, One reason for mentioning these ‘nihilists4shthe
existence of certain intermediale opinions between thci}xgosition
and our poini of view regarding the formation of comepts in an
exact science. Some of these middle-of-the-road congeptions should
not go unmentioned. .

o 3 .\ 4
RESTRICTION TO ONE SINGLE INITZAD COLLECTIVE

A point of view typical of the attitude.00many mathematicians is
represented in A. Kolmogoroff’s attraétive and important book on
the Foundations of the Theory of Brebability.® To understand this
point of view, consider for 2 metent (he purely mathematical
aspect of the content of a texfdook on the theory of probability.
We soon notice thit, aqgrauiiiiam: @f ghe caleulations are of onc and
the same type; namely, {@wen the distribution in a certain collee-
tive; to determine the probability corresponding to a certain part of
the total set of attribicy’; this ‘part’ of the so-called ‘attribute space’
or ‘label space’ i Q%tén determined in a complicated way; problems
of this kind, wh§) 1n our terminology belong to the class of ‘mixing’
problems, argvsometimes very complicated. The following is an
example: A\

The given collective consists of a combination of » simple alterna-
tives, (pbeing a very farge number. The atiribute of an element is
thds\d sequence of # symbols, which are, e.g., 0 or 1, ‘red’ or ‘blue’,

\EEG The probability of each combined result, i.c.. each of the 2
\Jpossible combinations of » symbols is known. We now consider

another large number #7, smaller than », together with a variable
number x, lying between m and », and a given function f{x), (e.g
the square root of x). One may now ask, what is the probability for
the number of 1’s among the first x symbols to be smaller than f{x),
for all x lying between 7 and #7 This question obviously singles out
a certain part of the 2* pessible combinations, a part depending only
on the number s and the function f{x}, and we are seeking the sum
of the probabilities of all attributes belonging to this group. This 1
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a ‘mixing’ problem, The mathematical sclution of such a problem
can be a very dillicult and complicated one, even il it consists, as in
thils case, in the application of one single fundamental operation to
one given initial collective. In the literature, we find the solution of
this problem for the special case of f(x) proportional to the product
V.x log (log x} with m and # both becoming infinitely large.

Let us return to the general problem in which we are interested.
It 15 quite understandable that mathematicians who are engaged in
the solution of difficult problems of a cerlain kind becomce inclined
to define probability in such a way that the definition fits exactly
this Lype of problem, This may be the origin of the view (which,
is in general not explicilly formulated), thal the calculus of probi-
bility deals cach time merely with one single collective, whose distri-
bution is subjected o certain summations or integrations, { his kind
ol theory would not need any loundation or ‘axioms’ othér than the
conditions restricting the admissible distributions anﬁ’?mtegrations.
The axioms of this theory therefore consist in assumpiiens concerning
the admissible distribution functions, the natuxre\\of the sub-sets of
the attribute space for which probabilities canlBe defined, etc.

Inthe case of probability calculus, these basio mathematical investi-
gations were carried out by Kolmogoroff/They form an essential
part of a compleic course on the tw@?@gm@gp%@my do not,
however, constitute the foundatiopsef probubility but rather the
foundations of the mathematicaltthcory of distributions, a theory
which is also used in other bramgches of science.

According fo our point of\yfew, such a system of axioms cannot
take the place of our aimp’t to clarify and delimit the concept of
probability. This becamey cvident if we think of the simple case of
the die or the coin.wliere the above-indicated mathematical diffi-
culties do not cXisf/or rather where their solution is immediate
without drawin@yof the mathematical theory of sets.®

Our preseifation of the foundations of probabilily aims at clarify-
ing precis€lthat side of the problem which is left aside in the
formalistwiathematical coneeption,

A

PN
\ W6

\ / PROBABILITY AS PART OF THE THLORY OF SETS

By consistently developing a theory which deals with only one
collective in each problem of probability and merely with onc type
of operation applied to this collective, we would eventually arrive at
the conclusion that there is no theory of probability at all. All that
is left of it then arc certain mathematical problems of real functions
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and point seis which in turiv can be considered us belonging to other
well-known mathematical domains, *From this point of view', to
quote from one of the reviews of Kolmogoroff™s book.® *(he theory
of probability appears to lose its individual existence; it becomes a
part of the theory of additive set functions’.

In the same manner, some mathematicians proclaimed that hydro-
dynamics does not exist as a separate science since it is nothing but
a certain boundary problem of the theocy of purtial differential
equations. Years ago. when Finstein’s theory first became&hown
among mathematicians, some of them said that ciecu'od_\,&n\amics is
from now on a part of the theory of groups. PR

To a logical mind this identification of two things\belonging to
different categories, this confusion of task und £ool”is something
quite unbearable, A mathematical investigationPdifficult as it may
be, and much space as it may occu py in the preséntation of a physical
theory, is never, and can never be, identitdhith the theory itself.
Still less can a physical theory be a partdblia mathematical domain.
The interest of the scientist may be conéeitrated on the mathematical,
Le., the tautological, side of the prdblem; the physical assumptions
on which the mathematical construetion is based may be mentioned
extremely casually, but the Iogfqél relation of the two must never be
reversed., a2 .

Herc is an anftohy UMW AT A8d: A stato is not identical
with its government;s is not a part of the governmental func-
tions. In certain cases all the extcrnal signs of the cxistence of a
state are the ac{k@ﬂs’ of its government; but the two must not be
identified.

In the sape.gense probability theory can never become a part of
the mathéwiatical theory of sets. Tt remains a natural science, a
theory gftertain observable phenomena, which we have idealized in.
the\o0ficept of a collective. It makes use of certain propositions of
thetheory of sets, especially the theory of integralion, 1o solve the

N

Jmiathematical problems arising from the definition of collectives.

O Neither can we concede the existence of a scparate concepl of prob-

\‘;

ability based on the theory of sets, which is sometimes said to contra-
dict the concept of probability based on the notion of relative
frequency.

All that remains after our study of the modern formal develop-
ment of this problem is the rather unimportant statement that the
theory of probability does not require in its summations {or integra-
tions) other mathematical implements besides those already existing
i the general theory of sets,
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DEVELOPMENT OF THE FREQUENCY THEORY

During the past decade, the frequency theory founded on the
notion of the collective has given rise to a noteworthy development.
This evolution seems most promising even though practically applic-
able formulations have so far not resulted from it. This new theory
was founded in Germany (1936) by E. Tornier.® J. L. Doob¥ is
today its chiel’ proponent in America. T shall briefly explain its
fundamental ideas, in so far as this is possible without presupposing
familiarity with the theory of sets on the part of the reader, \

At the outset, Tornicr introduces in place of the “collective’ the,
coucept of the ‘experimental rule’. By that he mcans an i;t\ﬁhit\é
sequence of observations made according to a certain rulg} for
example, the consecutive results of a game of roulette. Hevexpressly
admits the possibility of the result of a certain observatigiydepending
on the preceding one or of other connexions. My theery is based on
the assumption that all that happens to one givenMdie, or to one
given roulette wheel forms one infinite sequenes of events. In
Tornier’s theory, however. a given experim@"tzh rule admits of an
infinite number of infinite sequences asNf3) “realizations’. Let us,
for instance, think of a game of ‘heads and tails’ with the possible
results described by the fi gures 0 (headsiand h Lt@ilj:?. One realization
of this game may be an infinite sCREHRTS IR ARothE ™ sequence
of alternating 0's and 1’s, in shagt, “any infinite sequence consisting
of these two numbers. The total*ef all possible realizations forms a
set in the mathematical sens€'ef the word; each group of realizations
which have a certain char@cteristic in common is a partial set. If we
assign the measure 1 to\t\e total set, then the theory of sets teaches
us how to attribute §maller numbers to the partial sets according to
their frequcncies;(he"sum of these numbers must be 1. In Tornier's
theory, a givep,di€, or rather the experimental rule referring to (his
die, is charaeferized by attributing to the partial sets of possible
realizatim%\éertain measures as theifr probabilities. For instance,
there m‘a:y be a die such that the realizations containing move 1's
thany8’s predominate; for another die, sequences showing a certain
rEglar alternation of results may occur frequently; and so on.

. Tornier’s theory, there is not simply a probability of the 6 as
such; there cxists instead a probability of the 6 being, for instance,
the result of the tenth cast, i.c., the relative frequency of the realiza-
tions which show a 6 on the tenth piace. That means, of course, that
the setup in Tornier’s theory is much more general than that in my
theory. His theory permits us, for instance, to stipulate that the
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probability of a 6 on the twentieth cast should be different from that
on the tenth. Tt also leaves us free 1o make an arbitrary assumption
concerning the probability of casting | in the cleventh trial after
having cast 6 in the tenth one (this being the frequency of the group
of realizations containing 6 in the tenth place and 1 in the eleventh
place). Thus the multiplication rule does not follow from the
fundamentals of this theory. Tornier’s theory is also applicable
to experimental rules whose results do not form collectives in the
sense of my theory. To take inte account the conditions avhich
prevail in games of chance, it is necessary to make certain aSsump-
tions, e.g.. that the multiplication mle holds, that the frequency of
the realizations having a 6 in the #th place is independent of #, etc.

The greater generality of the Tornier-Doob theory™is bought at
the expense of a greatly complicated mathematidal apparatus, but
the logical structure of the system is perhaps giofe lucid and satis-
factory. We will have to wait and scc ho® Mhe solutions of the
elementary problems of probability calculud\vill be developed in the
new system. This seems to me to be Illejtés't for judging the founda-
tions of a theory. D\

1t should be noted that in the Mmtrican literature this develop-
ment of the frequency theory ig\often referred to under the heading
of ‘Probability as a Measure 9fiSets’. T have earlier pointed out that
probability can a\fxv%'&%%?%%ngfé%‘gg%ilsna measure of a set cven in
the classical theory of equtally likely cases. This is certainly not a
speciality of the theggywhich we have just discussed, even though
in it the principlestofhe theory of scts are used to a greater extent
than in others, %\~

PN SUMMARY AND CONCLUSIONM

I‘hf(\-"ﬁ\said all that § intended o say on the problem of the foun-
dafions of the theory of probability and the discussion which has
JAnsen around it, and T am now at the end of this argument. In an

Sattempt to summarize the results, | may convenienily rofer to the
+ content of the last paragraphs. My position may be described under

the following five peints:

1. The calculys of probability, ie., the theory of probabilities, in
s0 far as they arc numerically representable, is the theory of definite
observable phenomena, repetitive or mass cvents. Fxamples are
found In gamcs of chance, population statistics, Brownian motion,
ete. The word ‘theory™ s used here in the same way as when we call
hydrodynamics, the ‘theory of the flow of fluids’, thermodynamics,
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the “theory of heat phenomena’, or geometry, the ‘theory of space
phepomena’.

2. Each theory of this kind starts with a number of so-called
axioms. In these axioms, use is madc of general experience; they
do not, however, state dircetly observable facts, They delineate or
define the subject of the theory; all theorems are but deductions
from the axioms, ie.. lautological transformations; besides this, 1o
solve conereic problems by means of the theory, certain data have
to be introduced to specify the particular problem. .

3. The cssentially new concept of our theory is the collective
Probabilities exist only in collectives and all problems of the theoyy
of probability consist in deriving, according to certain rules,{atw
collectives from the given oncs, and calculating the distributiens in
these new collectives. This idea, which is a deliberate resftigtion of
the caleulus of probabilitics to the investigation of relaligns between
distributions, has not been clearly carried througirih any of the
former theories of probability, v

4. The exact formulation of the necessary properties of a collec-
tive is of comparatively secondary importafide” and is capable of
further modification. These properties ardlthe existence of limiting
values of relative frequencies, and randomhess.

5. Recent invcsligationg have sh\’o\’gpééhg&lﬁ;)ljegti%%‘ the con-
sistency of my theory arc mvahd.j'i i ot posmgféyto substitute for
the general randomness requircment some postulate of randomness
which is restricted to cerlain glasses of place sclections. The new set-
up of Tornier and Doob cofistitutes a promising development of the
frequency theory, \\‘ )

N/
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FOURTH LECTURE

The Laws of Large Numbers'

(\)

AMONG the many difficult questions connected wjti1\tlle rational
foundation of the theory of probability none hag“eaused so much
confusion as that concerning the real meaning @fythe so-called Law
of Large Numbers, and especially its relation T‘:Q\the frequency theory
of probability. Most authors waver belwgén two positions: the
definition of probability as the limitingyalile of relative frequency is
allcged either to imply Poisson’s Law* or to coniradict it. In fact,
neither is the case, PAY, _

The plan of these lectures natubally includes a detailed discll;sm?ln
of this question, A_restrictions ever, 15 imposed on me by the
fact tha:::l [do nof‘yg{\f;é%s%ﬁﬁmﬁg é‘rﬁcc any .Espccial mathematical
knowledge; therefore I«Shall refrain from deductions of a mati}e-
matical kind. Neverth@less, I hope to be ablc to explain the esgentlal
points of the problem’ sufficiently clearly, We are going to discuss,
besides the préposition which is usually called the Law of Large
Numbers, itssclassical counterpart, often ealled the Second Law of
Large Nughers, and we shall briefly indicate the extensions which
these t\}{)"l?lws have found in modera mathematics.

N\V
§ POISSON’S TWO DIFFERENT PROPOSITIONS

&

~f.:3 The ultimate cause of the confusion lies in Poisson's book‘iyself.
' As we have already mentioncd, he called two different propositions,

which were discussed in two parts of his Recherches sur lu probabﬂité
des jugements, by the same name. Quite probably he held them to be
really identical. In the introduction to his book he lormulates the
first of them in the following words: ‘Tn many different fields, em-
pirical phenomena appear to obey a certain general law, which can
be called the Law of Large Numbers. This law states that the ratios
of numbers derived from the observation of a very large number of
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similar events remain practically constant, provided that these events
are governed partly by constant factors and partly by variable factors
whose variations are irregular and do not cause a systematic change
in a definite direction. Certain values of these relations are charac-
teristic of each given kind of event, With the increase in length of the
series of obscrvations the ratios derived from such observations
come nearer and nearer to these characteristic constants. They could
be expected to reproduce them exactly if it were possible to make
series of observations of an infinite length’.

These sentences, taken together with the discussion of a greaty
number of practical examples which follows, make it quite clear that,
n speaking of the Law of Large Numbers, Poisson meant hefe’a
generalization of empirical results, The ratios to which he réfars In
his proposition are obviously the rclative frequencics withe which
certain events repeat themsclves in a long series of obsexvations, or
the frequencies with which the different possible results 6f an experi-
ment occur in a prolonged series of trials. If a celtdin result occurs
m times io n trials, we call mfn its ‘relative fidquency’. The Taw
formulated by Poisson in his introduction is ths identical with the
first condition we imposed on a collective,namely, that the relative
frequency of a certain cvent occurring in(i3€quence of observations
approaches a limiting value as the sequence of observations is in-
delinitely continued. If, when speak‘i;‘fg"o‘#}?ﬁg%iﬂa@( PAfgt Numbers,
everybody meant only what Poiss@m meant by it in the introduction
to his book. it would be correct™to say that this law is the empiricat
basis of the definition of probability as the limiting value of relative
frequency, X W

A large part of Pdis\‘so’ﬁ’s book, however, is taken up by the
derivation and discudsion of a mathematical proposition, which the
author also calls e Law of Large Numbers, and which is usually
referred to eithey pnder this name or simply as *Poisson’s Law’. This
proposition ds{@ gencralization of a theorem formulated earlier by
Jacob Bernoulli.® The Bernoulli Theorem may be quoted as follows:

If an\experiment, whose results are simple alternatives with the
probability p for the positive result, is repeated n times, and if e isan
grbitrary small number, the probability that the number of positive
results will be not smaller than n(p — ), and not larger than n(p -+ ),
tends Lo 1 as n tends to infinity.

We may illustrate Bernoulli’s proposition with a conerete example,
In tossing a coin 100 times, we have a certain probability that the
result *heads’ will occur at least 49, and at most 51 times. (Here the
p of the theorem equals 1/2, # = 100, # == 0.01.) In casting the same
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com 1000 times, the probability of the frequency of the result
“heads’ being between 490 and 510, is larger (7 and ¢ are the same
as before, but 7 — 1000). The probability of this frequency falling
in the range belween 4900 and 5100 in 10,000 casts is still nearer to
1, and so on. Poisson’s generalization of this proposition consists
in discarding the condition that all casis must be carried out with
the same or with identical coins. Tnstead, he allowed the possibility
of using a different coin cach time, p (in our case equal to §) now
denoting the arithmetical mean of the # probabilities of the » c,«%ns.

A still more gencral and very simple formulation of this prOpPosi-
tien was given by Tschebyscheff. [t applics to the case in which the
experiment invelved js not an alternative (‘keads opdails’), but
admits of a number of different results. For our discussion, however,
of the fundamental meaning of Poisson’s Law, it i§ Quite sufficient
to consider it in the special form which it takes A% simple game of
‘0 or I’. The question is: What is the rc];-ltion"‘o)‘ this mathematical
proposition, which we may briefly call Bdisson’s Theorem (or
Bernoulli Theorem) to the empirical lawsPormulated by Poisson in
his introduction ? Is it true that Poigsafi' Theorem is equivalent to
this law ? Is 1t correct to consider Paisson’s Thearem as a theorctical
deduction capable of an experir’r}cﬁra! test, and actually confirmed
by it? www.dbraul@bi"ﬁr’yorgin

FQUATEY LIKELY LYENTS

To answer the above questions, we must begin by considering
what Bernoulli @hd™ his successors understood by probability.
Poisson’s Thedkem' contains the word ‘probability’; Poisson’s em-
pirical law deesnot mention it. To understand clearly the meaning
of Poisson’8yTheorem in the classical theory, we must explicitly
introd};,(‘\é}iﬁto it the definition of probability used by Poisson
himgelf.)

.Wéalready know that the classical theory, in its concept of prob-
;\abj}ity, did not take into account the frequency with which different

\Fvents occur in long series of observations, Instead it declared, in a

more formalist way, that ‘probability is the ratio of the number of
favourable cases to the total number of equally likely cases’. With
an ordinary coin the two possible positions after the throw are the
two “equally likely” cases. One of them is favourable for the result
‘heads’; thus ‘heads’ has the probability 12, This probability concepr
is the only one used in the derivation of Poisson’s Theoren. To say
that an event has a probability “nearly 1" means. in the fangitage of
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this theory, to stipulate that ‘nearly all’ the equally likely cases are
favourable te the occurrence of this event.

If » throws arc carried out with a coin, and # is a large number,
the number of different possible results of this series of throws is a
very large one. For instance, the first twenty throws, as well as the
last thirty, may have the result *heads’, and all the remaining ones
the result “tails’; or the first ten throws may have the resuit ‘tails’,
and the rest ‘heads’, and so on. With # = 100 there are 2190 (a 31-
digit number) dillerent possible outcomes of the game. If we assume )
that the probability p of throwing ‘heads’ is equal to 1/2 for each single
throw, then all these 21 combinations of results must be con sidered
as ‘equally likely’ cases. Lot us assume that ¢ is taken as Q.0L)
Poisson’s Theorem states that when # is a large number, by far the
greatest part of the 2* different results have the commoproperty
that the number of *heads’ contained in them differs froffyk/2 by not
more than #/100. This is the content of the proposition derived by
Poigson. It docs not lead to any statement conpérhing the actual
results of a prolonged scrics of experiments. )

4 W
~“x\
N

ARITIMETICAL EXRLANATION

In order to make this point stilf‘i;‘?éﬁr%rf’f‘%% SHATN8WF répresent the

results of throwing the coin by thelffigures 0 and 1, where 0 stands for
the result *heads’ and 1 for thereSult ‘tails’. Each game of 100 throws
can be characterized by a 1€0-digit number, the digits being 0's and
Ps. If we omit any zegos{which precede the first 1 on the left-hand
side, we obtain shorLcr\q\mbers which can still be used to represent
the corresponding séquence of experiments. We can now arrange all
the numbers ocouiting in our system of results in a simple scheme,
which begins ag\allows:
N\
QX10, 11, 100, 101, 110, 111, 1000, 1001, . . .

They si;’hémc includes all numbers that can be cxpressed by 0’s and

sVp to the number represented by a succession of 100 1%s. As
mehtioned above, this sequence includes a total of 219 numbers, ie.,
about a million trillions.

The meaning of the notation introduced may be explained by the
following example. The number 101 in the scheme corresponds to a
result beginning with 97 zeros and ending with 1, 0, and again |, If
n were 1000 instead of 100, the scheme would begin with the same
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numbers as above, but would be very much longer, containing 217
numbers. 0 would now mean a result composed of J000 zcros, and
101 a result beginning with 997 zeros. Poisson’s Theorem is then
nothing but a statemenlt concerning such systems of numbers,

The following facts are of a merely arithmetical nature and have
nothing to do with repeated events or with probability in our sense.

If we consider the set of natural numbers represented by 0's and
Vs up to 100 digits, the proportion of numbers containing 49, 50, or
51 zeros is found to be about 16 %;. Tf we extend the scheme to include
numbers with up to 1000 figures, the proportion of those contyifiing
from 490 to 510 zeros is much higher, roughly 47%. Amepg"the
combinations of 0’s and 1’s containing up to 10,000 ﬁggﬁrés,“there
will be more than 9597 containing from 4900 to 5100 zcrs) In other
words, for n = 10,000 at most 5% of all combinatiopsare such that
the proportion of 0°s to I’s differs from 1,2 by mdrstthan 197, f.c,
such that the number of O’s differs from 5000 by-more than 0.01n =
100. The concentration of the frequencies inNWY neighbourhood of
the value 1/2 becomes more and more propoynced with the increase
in the length of the sequence of throws, £ ¢

This arithmetical situation is cxprefied in the classical theory of
probability by saying: In the first, sequence the probability of the
results 49 to 51 zeros is Jeint ivdsecond scquence the probability
of the results 490wt‘33w5(f 33 é.;l’?;%i?rt%énthird sequence the results
4900 to 5100 have the probability 0.95. By assuming » — 0.01 and
P = 1/2, the theorem of Bernoulli and Poisson can be formulated as
follows: Let us write.down, in the order of their magnitudes, all
2° nuinbers which cambe written by means of 0's and 1’s containing
up to » figures. The proportion of numbers containing from 0.4%
to 0.51n zeros increases steadily with an increase in 7.

This propasftion is purely arithmetical ; it says something about
certain nufibers and their propertics, The statement has nothing to
do with ;t’t.fe result of a singlc or repeated sequence of 1000 actual
obsgr¥ations and says nothing about the distribution of 1’s and 0’s
in such an cxperimental sequence, The proposition does not lead to

. &ny conclusions concerning empirical sequences of obscrvations as

h

fong as we adopt a definition of probability which is concerned only
with the relative number of favourable and unfavourable cases, and
states nothing about the relation between probability and relative
frequency.

The same considerations apply, in principle, to cases similar to
that of tossing a coin. When we consider a game with a true die, we
must replace the system of numbers composed of 1’s and 0's by the
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sysiem of numbers containing six different figures, i.e., the figures
I to 6. The theorem states in this case that with an increase in the
number », the proportion of numbers containing about n/6 ones
increases steadily, and finally approaches one.

Our conclusions can be summarized as follows: The mathematical
deductions of Bernoulli, Poisson, and Tschebyscheff, based as they
are on a definition of probability which has nothing to do with the
frequency of occurrence of evenis in a sequence of observations,
cannol be used for predictions relative to the results of such sequences.,
They have, therefore, no connexion whatsoever with the general
empirical rule formulated by Poisson in the introduction to his bgok:

R
Ny

SUBSEQUENT FREQUENCY DETINITION ”,'}‘
4

How is it possible that Poisson himself considered his mathe-
matical theorem as a confirmation of his empiricaT;Law of Large
Numbers?

Onee this question has been asked, it is egsgto answer. Poisson
understood two different things by probabilily” At the beginning of
his calculations, he meant by the probability’1/2 of the result *heads’
the ratio of the number of favourable ‘sdses to that of all equally
possible cascs. However, he interpre(€d the probability ‘nearly 1 at
the end of the calculation in a JHEEVeHPRET FRILTEIe was sup-
posed to mean ihat the corzgSponding event, the occurrence of
between 0.497 and 0.51» heads in a game of » throws, must occur
in nearly all games. This.i Jc‘zaange of the meaning of a notion in the
course of deduction ix;\{Jbviously not permissible. The exact point
where the change takes‘place remains unspecified. Is the probability
0.16 of a series of AB0throws containing from 49 to 51 heads already
1o mean that 16¢50f all pames in a long series must produce these
results? Or i§4his interpretation only applicable to the probability
.95 caleulated for n = 10,0007

There(ds no possible answer to these questions. If one wishes to
retaintat all cost the classical definition of probability and at the
safietime to obtain Poisson’s conclusion, then one must introduce
‘anauxiliary hypothesis as a kind of deus ex machina.® This would
have to run somewhat in this way: ‘If a calculation gives a value not
very different from 1 for the probability of an event, then this event
takes place in nearly all repstitions of the corresponding experiment’.
What e¢lse is this hypothesis but the frequency definition of proba-
bility in a restricted form? If a probability value 0.999 means that
the corresponding event occurs ‘nearly always’, why not concede at
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once that the probability value 0.50 means that the event occurs in
the long run in 50 cases out of 1007

It is then, of course, necessary to give a precise formulation of ihis
assumption and to show that Poisson’s Theorem can be derived on
the basis of this new definition of probability. We shall see {hat this
deduction of the theorem differs from the classical one in many
ways. At any rate, the procedure of changing the meaning of 4 con-
cept, without notice, between the beginning and the end of an
argument is certainly not permissible. Q

We close this section with the statement that Poisson's Thodrem
can be brought into relation with Poisson’s Law of Laroe(Ngmbers
only by adopting a frequency definition of probability igyone form
or another. 3

27
< 3

7 ~\'
THE CONTENT OT POISSON’S '1']’1‘1,"\)]“:&1

It is natural to raise the following objectiom: It we wish to deline
the probability of the result ‘heads’ as’dhe limiting value of its
relative frequency, then we have to\khdw in advance thati such a
limiting value exists. In other word§ ¥itst of all we must admit the
validity of Poisson’s Law of LargelNumbers. What then is the use of
deducing, by complicated ca %ﬂz’lt_ions a theorem which apparently
adds nothing to WHIE 983 }b%:eﬁa i¥slifed ? The answer is that the
propositions derived mathematically by Bernoulli, Poisson. and
Tschebyscheff imply mgeR more than a simple statement of the cxist-
ence of limiting valdes ‘of relative frequencies. Once the frequency
definition of prob\bﬂity has been accepted and Poisson’s ‘I'hcorem
restated in the €rms of this theory, we find that it oes much further
than the origtﬁal"l_aw of Large Numbers, Under ll;é new conditions,
the essenfialpart of this theorem is the formulation of a definite
sta_tcmgt(;:conceming the succession of, say, the results ‘heads’” and
‘tails’\in” an indefinitely long series of throws. It i easy to {ind
sequences which obey Poisson’s empirical Law of Large Numbers,

:.bpt' do unot obey Poisson’s Theorem. In the next scction, we shall

\ discuss a simple sequence of this kind. In it the relative frequency of

the positive result has a limiting value 1/2, exactly as in tossing 4

com; yet Poisson’s Theorem does not appiy to it. No mathematician

th knox_vs the propertics of this sequence would consider it in con-

nexion with probability, We shall use it here in order to show what

iﬁgofal cotlllditio]?. is imposed by Poisson’s Theorem on sequences
; orm the subject of 1 i : !

b form ¢ co]lecjtjves. he theory of probability, namely, those
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EXAMPLE OF A SEQUENCE TO WHICH POISSON’S THEOREM
DOES NOT APPLY

Lct us consider a table of squarc Toots; this is a table containing
the values of the square roots of the successive integers 1, 2, 3,
4, . . ., calculated to a certain number of decimals, say 7. We
shali consider only the penultimate (sixth) figure after the decimal
point; ‘positive results” will be numbers which contain one of the
figures 5, 6, 7, 8, or 9 in this place; all numbers containing one of
the figures 0, 1, 2, 3, or 4 in this place will be ‘negative results’.
The whole table is transformed in this way into a sequence of s
(positive results) and O's (negative results) which alternate if, ‘an
apparently irrcgular way. Theoretically. this scquence is an imfinite
one, although in practice all square-root tables end with Lorme par-
ticular number. 1t is plausible and can be proved rigorously® that the
limiting frequencies of hoth O°s and 1's in this sequence have the
value 1/2. 1t is also possible to prove the more gesral proposition
that the relative frequencies of the single figurgs G 1, . . . 9 are all
equal to 1/10. R

What we want to investigate is the possibility of applying Poisson’s
Theorem to this sequence. The theorem reguures that if groups, each
of # consecutive numbers, are formed¥fsom the infinitc sequence of
0’s and 1's, then, if # is sufficientlyiEd bEauhi brexy Sbild contain
about 509, zeros and 309 oncs. oy

The beginning of the table segms to conform to this rule. To make
this clear, we may considqg&éch column of 30 entries in a specified
table as a separate group.\and then count the numbers of ‘positive’
and ‘negative’ resultg i%i{each group. A simple caleulation shows,
however, that the state of affairs changes when we proceed to very
large numbers Which lie beyond the scope of the usual tables. Ac-
cording to a we;ﬁeknown formula, if @ is much larger than 1, then the
sguare rooﬁéﬁf’an expression of the form «® -- 1 is nearly equal to

1
a - 2(}‘5
a%.089 billion (1012). The square roots of the consecutive numbers

ot — 1, @t —2, ... will differ by the very small amount
121675 i.e., by one half of a unit in the sixth decimal place. It is
necessary to consider about ten consecutive entries to cause a change
in the value of the square root by 0.000005, and so to change a ‘posi-
tive’ result in our sequence into a ‘negative’ one. In other words, in
this part of the tabie our sequence of 0’s and I’s contains regularly
alternating groups of about ten consecutive 1’s and ten consecutive
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0’s. The following section of an actual table illustrates this arrange-
ment:

e

7
‘."..

at a Case
012 1+ 1237 105 -+ 0.0006185 1
+ 1238 6190 i
11239 6195 i
— 1240 6200 0
o 1241 6205 0
+ 1242 6210 0
- 1249 6245 AN
+ 1250 6250\

Further along in the table, e.g., in the 1‘cgi0n.‘t)]\:z — 100 millions,
the run of consecutive O's and 1's will be of thehverage length 1000.
We sce that the structure of the sequende’of I’s and 0's derived
from the table of square roots is radicall)'gdi fferent from the structure
of sequences such as that derived frbmtossing a coin. The random-
ness described by Poisson’s Theorem apparently exists only at the
beginning of the table. Furthereen) the runs of identical ‘resulls’ are
slowly but steadily tnerdbsingibirdengths Ican be easily scen that this
sequence does not obey thePoisson Theorem. Let us assume a large,
but finite number # as tlfe length of a group, say » — 500. By taking
enough terms in ougms:equcnce {e.g., to @ = 100 millions), we come
into a regicn whe{é\ the average length of the runs is much greater
than #, In this tegion nearly all groups of 500 items will consist either
of zeros onlypor of ones only, whercas Poisson’s Theorem requires
them to cehsit of, roughly, 50% of cach. The limiting values 1/2
for thg fg%tihencies of the results ‘I’ and “0° arc due in this case to
the equatl lengths of runs of both kinds. In a true game of chance,
}}Q)"}‘_Ver,_thc approach to the limiting values is brou ght about by an
. \equahzatlon of the relative frequencics of 0°s and 1°s in nearly every
Jgroup of sufficient length.

BERNOULLT AND NON-BERNOULL] SEQUENCES

What was ghown_ here for the table of square roots holds true, in
the same or in a similar way, for tables of many other [unctions,
e.g., i_‘or powers of any order, ete. It does not hold for the table of
logarithms, which Henri Poincaré di scussed as an example. Poincaré
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failed to notice that in this table fhe frequencies of 0’s and 1's
fluctuate permanently and do not tend toward limiting values.

The result that is important for us is that there exist infinite
sequences of 0's and 1's such that the relative lrequencies of both
these atiributes tend toward definite limiting values but for which
Bernoull’s theorem does not hold true.

Of course, the sequences which we have considered here do not
satisfy the condition of randomness since each of them is defined by
a mathematical formula. We may then ask whether randomness in
our sense (which, together with the existence of the limit of relative
frequencies forms a sufficient condition for the validity of Bernoudlils
theoretn) is a necessary prerequisite for the validity of this thegren.
This is not the case. It is not too difficult to construct matherpatical
formulz which define ‘Bernoulli sequences’, i.e., sequences Where a
stabilization of frequencics will occur in suﬁicwnky; long sub-
scquences. Hence, the state of afTairs is the following?

For arbitrary sequences satisfying the first axidm the Bernoulii
Theorem necd not hold true. It is not neccssag@o Tequire complete
randomness in order to prove the Bernoulli tHledtem. In other words,
the theorem of Bernoulli is a consequencgdi’the assumption of ran-
dommess but it cannot be used as a sub%uute for the randomness
requiremnent. One could, for instance nd%lcat quences of numbers
which would satisfy the Bernoulii i 'bg‘f' ¥ Fm TWRiREAE chance of
an attribute could be changeds by a place sclection of the prime-
number type. The Bernoulli-P@isson-Tchebyschelf Theorem expresses
only a special type of rapdemness. If we call those scquences for
which this theorem ho}{ Bcrnouih sequences’, we can say that: All
collectives arc Bernpulti*sequences but not all Bernoulli-sequences
are collectives.

~t\”
DERIVATSEON OF THE BERNOUILLI-PGISSON THEOREM

It shelild thus be clear that, once the frequency definition of
probabllrty has been adopted, the theorem derived by Poisson in the
fGBl'tb chapter of his book contributes important information re-
gm'dmcr the distribution of the results in a long sequence of experi-
ments. We have also seen that there is no logical way of obtammg
this nformation starting with the classical definition of probability.
The only way is to define probability from the beginning as the
limiting value of relative frequencics and then to apply, in an
appropriate manner, the operations of selection, combination, and
mixing.
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Let us consider the simplest case, in which an infinile sequence of
experiments is made for the same sinple altcrnative with the proba-
bility p of success (special casce of the Bernoulli Theorem). By apply-
ing n sclcctions followed by 1 combinations, we form a new collective
Just as we did when solving the problem of de Méré, in the sccond
lecture (p. 00). Each element of this new collective consists of a
group of # trials. The attribute of cach such element is therefore
given by # numbers (0°s and 1's). Then, by the operation of mixing,
we return to a one-dimeusional attribulce: This is dons by consideriog
now as the result of the combined cxperiment only the munber'w of
I’s in the group of » trials, regardless of the arrangement gfQ%y and
I’s in the group. In this way we obtain a probability of the{@gturrence
of », ones in a group of # trials. We call this probabifity wim; p)
since it is dependent on both s7; and p; it is given ’byfthe' formula:

.
G — () )
wing: p) — (”1) P — e
n' o N
Here the symbol ”1) stands for a kngsiiﬁqmcgcr, dependent on r

and ;. If we add all the w(n,; p) for B those n, which fall between
n(p — e)and nip + &), wherc e is asarbitrarily chosen, small positive
magnitude, we ebtain HB?PJHBF%??& B {hat the relative frequency ol
I's in a group of » exporimdnts lies Fetween (p—eyand (p + &)
Studying the resulting formtla, we arrive at the conclusion that,
howcv;r smaall the vafyi’of e, the probability P tends towards unity
as n ncreases indeliitely. We have thus proved the Bernoulli
Theorem, O
Today we kngWsimpler and more fat-reaching methods of arriving
at this result, We can also include the more gcnﬁral case where the #
ob;ervatipr{s“ are not derived [rom the same collective (case of
Poisson); 61 where they are not simple alternatives (case of Tchebys-
c?leﬂ\l}b’?hese generalizations hold no further interest for us here
stpeewe are concerned only with the logical aspect of the deduction.
o \In‘ E:}osmg, we note that by amending the usual understanding of
QO the First Law of Large Numbers' we are in no way belittling the
great achievement of the pioneers of probability caleulus. This will
be rea11ze<_1 by anyone who is at all familiar with the history of
mather.natlcs. The founders of analysis, Bernoulli, Fuler, Laplace,
have given us a large treasure of propositions on iﬁtegrati'on, series,
and similar subjects, which were properly derived and correctly fitted
1nto logical systems only centuries later. In many cases, all that was
needed was greater precision with respect to the passage to the Hout.
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To provide this greater precision in the case of the fundamentals of
probability caleutus was the very task which we had set ourselves.

SUMMARY

{1} The proposition introduced by Poisson in the introduction to
his book as the Law of Large Numbers is a statement of the em-
pirical fact that the relative frequencics of certain events or attributes
in indelinitely prolonged scquences of observations tend to constant
limiting values. This statement is postulated explicitly in our firsg
condition for a collective. S

(2) The mathematical proposition derived by Poisson in the féflrr\h
chapter of his book, which he also called “The Law of LargeNum-
bers’, says nothing about the course of a conercle seduence of
observations, As long as we usc the classical definition pfprobability,
this theorem is nothing but a statement of certain purely arithmetical
regularities, and bears no relation to the empitical*law explained
in (1). AN

(3) The Poisson Theorem (see (2)) obtaing & new meaning if we
agree to define probability as the limitingwaiue of relative frequency,
a definition suggested by the above empirical law. If, however, we
adopt this definition, Poisson’s Theorgl %oi:_sbcopsiderably further
than the empirical law; it charact@iizes e WAS X Which different
attributes alternate in empirical §8quences.

(4) The content of Poissgnls Theorem is in fact that a certain
equalization or stabilizatioh, of relative frequencies occurs already
within nearly all suﬂic'es@ly’long sub-groups of the infinite sequence
of elements. This is 11&»1mplied by assuming only the existence of
limiting values of xelative frequencies. Tn fact, as was shown in an
example of a seqlience of 0's and 1’s, the relative frequencies may
tend to deﬁnijta“limits, e.g., 1/2, but the runs of 0's and 1's may
gradually.aid Tegularly increase in length so that eventually, how-
cver largéwr may be, most groups of 2 consccutive elements will
cons@sj; of O°s or of s only. Thus, in most of these groups there will
be, 20 ‘equalization” or “stabilization” of the relalive frequencies;
obyiously, such a sequence does mnot satisfy the criteria of
randommness. '

(5) The correet derivation of the Poisson Theorem based on the
frcquency definition of probability requires not only the assumption
of the existence of limitin g values bul also that of complete random-
ness of the results. This condition is formulated in our second
postulate imposed on collectives.
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After things have been clarified in this way, all that remains to be
done is to decide a question of terminology: which proposition shall
be called the ‘Law of Large Numbers’? My sugpestion is that this
name should be reserved for the theorcm of Bernoulli and Poisson.
The empirical law formulated by Poisson in the introduction to his
book can conveniently be called the axiom of the existence of
limiting frequencies.

INFERENCE ™\

If the probability of the occurrence of an attribute withia, given
collective has a value near to unity, we may express phis fdct by
saying that ‘there is a great certainty’ or ‘we are almost ceftain’ that
this event will occur on one specific trial. This way Of cxpressing
ourselves is not too reprehensible so long as we realize that it is only
an abbreviation and that its real meaning ig that the cvent occurs
almost always in an infinitely long sequenceof observations, 1f we
apply this terminclogy in connexion with\\he Bernouili Theorem,
and if we say in addition that a numbe[‘ which, for small &, lies
between a{p — &) and n(p -|- €) is ‘almost equal to np’, we arrive at
the following imprecise formulatign ¥f a trial with probability p for
fsgccess’ is performed againiapdigaiy, and if # is a large number.
itis to be expected with greaf €estainty that in one particular sequence
of # trias the event will oceur approximately sp times. This formula-
tion leads us to ask whether a cerlain converse of this proposition
might not hold true,;‘l'e&ncly the following: If in one sct of # observa-
tions, » being a large number, the ‘event’ has occurred », times, may
we then inversely, ‘expect with great certainty’ that the basic proba-
bility p of {hg’¢Vent is approximately equal to the ratio n,/n? We
shall see thapunder certain conditions this is actually the cuse, and
that thiss0-called Bayes’s? Theorem represents a Sccond Law of Large

Nunibers which, under certain assumptions, can be proved mathe-
matically,

A It we use an extremely sloppy terminology, both laws can be sa1d
\to coincide in one statement: The probability of an event and the

relative frequency of its occurrence, in a long sequence of trials, are
about §qua1. If, however, we use our words with precision--—ﬁﬂd to
do 50 js one of the principal tasks of these lectures—we shall find
that t_he original proposition and its converse have very different
meanings. Now, we are speaking about a probability that p will
assume certain values or will lie in a given interval, whereas in the
original instance p was a given, unchanging number, T shall presently
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construct the collective for Bayes's problem, but first I wish to insert
a remark,

Those who think that probability can be defined independently of
the frequency of occurrence of an attribute in a sequence of experi-
ments believe that the above-mentioned proposition, whereby prob-
ability and frequency roughly coincide in a Iong tun of observations,
constitutes a ‘bridge’ between what actually happens and the concept
of probability introduced by them. However, we know that thisis a
delusion, From the definition of probability as the ratio of favour-
able to equally likely cases, no logical rcasoning will lead to the
propositions discussed above—ncither to the original Bernoulli-
Poigson statement nor to Bayes s converse of it. All that wel cani
logically deduce from this premise is pr oposmons concerning, Juch
ratios. A gap remains; the manver in which it is to be wrossed is
arbitrary and logically not justifiable.

¢ ¢
QS

P\

BAYES'S PROBLEM O

An easy way to understand Bayes’s probleLQ {S'to consider a game
of dice in combination with a lottery, Let€us imagine an urn filled
with a very large number of small cubes ar’ similar bodies, which we
are going to calI stones. Bach stone, hzfs ?}rxag"i”tl sides, numbered I to
6, on any of which it can fall when Browi out of4dfee box. Fach
time a stone is drawn from the ur.n, it is placed in a box and then
turned out, and the result of ghe throw is noted. The stones arc not
all equal; some of them mgyibe ‘true’, with a probability 1/6 for each
side, others biased, w I:Cthe single probabilities differing more or
less widely from the \13 1/6. The actual values of the six proba-
bilities can be deterfuined by a sufficiently long sequence of throws
made with each 3pht. We shall consider the probablllty of casting 6,
and denote it/yp. Thus each stone has a characteristic value of p.

We now €onsider a collective whose elements arc as follows: A
stong is grdwn from the urn, placed in the dice box, and thrown »
times jnslccession. The result, or attribute, of this total experiment
is gomposcd of, on the one hand, the p-value of the stone drawn
fomh the urn, and, on the other hand, the ratio m/n, where #, is the
number of casts which have produced the result 6. This is a two-
dimensional collective, with each element characterized by a pair
of numbers, p and nyfn.

The distribution in this collective, or the probabilities of all
possible combinations of the numbers p and #,/#, must be caleulated
by the combination rule. This involves the multiplication of two
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factors: the first of them is the probability (p) of drawing a stone
with a certain value of p from the urn; the sccond is the probability
that an event with probability p will occur #; times in a scries of »
trials. The elementary theory of probability teaches us how to
calculate this second factor from given valucs of p, ny, and ». This
probability has, in fact, been derived (sec p. 114) and denoted by
w(py; p). The probability of drawing a stone with the attribute p
and of obtaining with it », 6's in n throws is, according to the
multiplication rule, v(p)w(n; p). Assuming that » is a constaniewe
can consider this product as a function of p and »/n, and derate it
by f(p, mfn).

To arrive at Bayes’s problem, we must perform onc ntgre Opera-
tion on our cellective, namely, a partition. Let us l't‘;QQIlébt what we
mean by this, In a simple game of dice a typical proflent of partition
is the determination of the probability of the resdl£2, if it is already
known that the result is an ¢ven number. The\dollective is divided
into two parts, and only that correspondig to ‘cven’ results s
considered. A

In the case which we are now digeussing, the following partition
takes place. We know already that(6ydppeared », times in # casts.
What is the probability of this relult ‘being due’ 1o a stone with a
certain given valug,of g8 Tk patyof-thacollective to be considered
in the calculation of this prgbability is that formed by the sequence
of casts with a certain valtiebof m/n, e.g., 7,/n = a. According fo the
division rule devived ig\the second lecture, the probability in ques-
tion, the final probalji‘hty, is caleulated by dividing the probability
f(p,@) by the sunt\of the probabilities of all results retained after
partition. The Sammation must be extended over all values of p,
while # is golistant. We will denote the result of this summation by
F(a}, singe itis x function of ¢ only. The final resull of the calculation
is the guétient f(p,a)/F(a), i.e., a function of both p and «. We may
call.& ih the usual terminology, the ‘a posteriori probability‘ of a
f:@ﬁam value of p, corresponding to a given value of = 4.

:.\.

INITIAL AND INFERRED PROBARILITY

The expression ‘a posteriori probability’ for the ratio f(p,a)/F(a)
refers, of course, to the fact that there is still another prdbabiljty of
P 1o our problem, namely, #(p). The latter is the probability that 2
ston‘e with a given value of p will be drawn from the urn. It is called
the ‘a priori probability’ of p. Even though we feel that it does not
matter what words are used so long as their meaning s clear, it does
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seem preferable to use expressions which are not weighed down by
metaphysical associations. We have already proceeded in this way in
our second lecture, when we developed the operation of partition.

The quantity #{p} has the following racaning: Instead of considm:—
ing the whole experiment, let us fix our attention only on the repeti-
tive drawing of a stone out of the wn, without being interested in
what happens Jater to this stone. The relative frequency with which
a stone with a given value of p appears in these drawings has the
limiting value z(p). This value may well be called the initial or
original probability of p. This probability is quite independent of the
observations made subsequently on a stone during the n times if4s
tossed out of the dicc box. Next, let us consider the whole expeti-
ment, concentrating only on those instances when, in » throws, a
stone which may have any value of p showed the ¢ with{i yelative
frequency n /i — a. Among the stones thus selected, thosSe with the
specificd value of p will appear with & relative frcqﬁ‘c}lcy different
from v(p). The limiting value of this frequency\isi an infinitely
continued sequence of observations, will be f(pajf#(a). This limiting
value is the probability which we infer from the’ observation of the
n, successcs in # throws, We shall therefgrg\call it the probability of
inference or inferred probability of p. A/numerical example will
clarify this point. wwgndbraulibrary.org.in

Suppose our urn contains ning.Xmds of stenes, such that the
possible valucs of the probabilityy for the occurrence of a 6 are
01,02, 0.3, . . ., 0.5 The stones are considered alike in outward
appearance. They could, forduslance, be regular icosahicdra showing
thebon2, ord, orb, . A ot 18 of their 20 sides with corresponding
values of p equal to 2/20 = 0.1, 4/20 =02, . . ., 18/20 == 0.9,
If there is an equalgtuinber of each kind in the urn, we can assume
that the probabiiity of drawing a stonc from any of the nine
categories is the-Same. Therefore, in this case, (0.1) == £(0.2) ==

-« == p(095.3="1/9. This gives us our initial distribution #(p).

We nQ\&f ecide to consider the case n = 3, m, = 3, i.e., we cast
each stope five times and note only those instances in which three of
thw?gé throws have shown a 6. The probability of obtaining three
sheggsses out of five trials with a given experimental object can be
determined according to the formula shown oun p. 114, and is:

w(3ip} = 10p%(1 — p)2,

In fact, if n = 5 and n, — 3, the term (:) has the value 10, We
1
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can now caleufate the product fip.2), where a — nyfn — 3/5, for
each of the nine values of p. It is given by the formula:

f0:.3/5) = v(pw(35p)y = § . 10p%(1 - p).

This gives us the following easily computed results: For p — 0.1,
the corresponding value of £ is 0.0009; for p = 0.2, f — 0.0057;
. . v forp = 0.6, £ == 0.0384; and so on. The sum of all nine f~valnes
amounts to F = 0.1852. Consequently, the probability ol inference
which we arc seeking will be 0.0009/0.1852 = 0.005 for p — 0,1 yfor
p=02 we obtain 0.0057/0.1852 - 0.031; . . . for p 06 i
becomes 0.0384/0.1852 = 0.21; and the sum of ning valug$owill be
equal to 1. We thus have shown the following: 1f we knoW nothing
about a stone except that it was drawn from the above-described urn,
the probability that it will belong to one of the ninedifferent cate-
gories is equal to 1/9 == 0.11. If, however, we alrghdy know that this
stoie has shown three successes in five casts, thainthe probability that
it belongs to the category of p — 0.1 or P — O Pecomes much smaller
than 0.11, namely, 0.005 or 0.031 respeefitely, whereas the proba-
bility that it is a stone for which p= 0‘6\;}101‘621868 from 0.11 1o 0.21.
Everyone will consider this result to{be understandable and reason-
able. The fact that a stone has Ilad;a'history of 60 %] success within
a short experhncmbmdhﬁudﬂéa@&tﬁegﬁ%babjlity that it is a stonc of
the category of p = 0.6 and léé,?;(:us its probability for a very different
value of p such as 0.1 or'®2. Other valucs of the probability of
inference in this case afe:*0.08 for 7 = 0.3; 0.19 for both p = 0.5
and p = 0.7 (taking tiyd decimals}; and finally 0.05 for p — 0.9. The
sum of the threc*probabilities corresponding to the three values
P»=05p=065nd p = 0.7 is 0.59, whercas the total probability
correspondingdo the other six p-values together is only 0.41.
O
; ()"  LONGER SEQUENCES OF TRIALS
Lét\us consider the same example us above, but with a certain
:1§od1ﬁcatlon. We have again nine lypes of objects in equal propor-
“\Muons in our urn. Thus, the nitial probability for cach categery is
&gaIR v = 1/9 = 0,11 for cuch of the nine types. Once again, we
partltxon_oﬁ‘ those instances when casts with a stone have shown
success with a frequency of 609/, However, this time we will assume
that ‘ghe total number of casts is no longer 5 but 500, and, corres-
pondingly, that the number 5, of required successes is changed from
3to 300. What can we now infer with regard to the probabilities of
the nine values of a2?
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The same formula as used above will answer our question, even
though the process of computation is now more complicated. owing
to the higher powers of p and (1 — p), and to the higher value of

(!Z) The result is as follows: The probability of inference for
p — 0.6 is now 099995, while the figure which corresponds to the
sum of the three neighbouring p-values 0.5, 0.6, and 0.7 differs from
unity only in the 17th decimal place. We can therefore say that it is
“almost certain’ that an object which has had 609, ‘success’ in 500,
trials has a probability p of success cqual or almost equal to 0.60°
This result is not surprising. It shows that infercnce based on a Jong
scrics of experiments is far more effective than that based on g'short
one. If we consider all the stones in the urn, the same pmbabllzty
corresponds to each of the nine categories, whereas by.Censidering
only those stones which showed 607 success in 500 tuaIs, we find,
practically speaking, no probability correspending\té values of p
smaller than 0.5 and larger than 0.7. This result stadds cut even more
markedly as we increase the number n of obs¢ryalions still further.
This feature constitutes the main content of\Bayes s Theorem. Let
us state it, for the moment, in a preliminAsy version:

If an object, arbitrarily drawn out ofen’trn, is subjected to a large
number n of observations showing afReqUEREIIGh SHEaasE.th/n — a, f
is highly probable that the probglflity of success p of this object is
equal or nearly equal to the observed relative Jrequency a. Stated a
little more precisely, this 2y §bability tends to unity as z increases
indefinitely.

We have to clarlfy ther the meaning of the words ‘equal or
nearly equal to o', Ifwe assume that there is merely a finite number
of different stoncgwith corresponding different, discrete values of
the prob’iblllty %success then the observed frequency a of success
will, in gene;:a,l not coincide with any of those values of p. There
will, howgyer, be two values inmmmediately adjoining the observed
value of w Which are equal to some of the possible p-valucs and we
can apply the statement of Bayes’s Theorem to these two. If, as in our
gdsenthe observed value of & does coincide with one of the possible
valdes of p, then this one alone, or together with the two immediately
adjoining values of p, is to be included in the statement of Bayes's
proposition.

The mathematician will often prefer to stipulate that the proba-
bility of success p is not restricted in advance to certain discrete
fractions but that it can assume any valve in the whole interval
between G and 1, or in a given part of this interval. In that case, the
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initial probability »(p) is given as a probability density, Bayes’s
Theorem then considers p along a short interval extending from
4 — 0 a L &, where e is an arbitrarily small number. We can then
state the following: If an object picked at random has shown a fre-
quency of success a, in a long sequence of experiments, then the pro-
bability P that the probability p of this object lies between ¢ — & and
a +— & will approach unity more and more closely as the number n of
experiments is more and more increased. The nwmber & can be arbi-
trarily small, so long as the interval from ¢ — & 10 @ g iy Jarge
enough to include, in the case of preassigned discrete p-valuel, at
least two possible values of p. )

"N\
Ny

INDEPENDENCE OF THE INITIAL DISTRIEUFION

We still have to add a very cssential remark.marder to bring into
proper focus the actual content and the great typortance of Bayes's
proposition. We have seen that the probabiliby of inference depends
on two groups of data: (1) the initial }q'@bability r(p); (2} the ob-
served results of # experiments fromghich the inference is drawn.
In our first example, we assumed thét the nine different types of
stones, with p = 0.1 to 0.9, werelcontained in equal numbers in the
urn, so that the véﬂtfé“’o‘#&!i?éﬂi@f thi ffRc probabilities v(p) was equal
to 1/9. Let us now assume.fhat there arc in the urn onc stone of the
first catcgory, two of thersecond, . . .. and nine of the ninth category.
The total content will how be 45 stones (being the sum of the
numbers 1 to 9),4adthe values of the probabilities will be: (0.1)
= 1/45, 0(0.2) = 245, . . ., v(0.9) = 9/45. The probability of infer-
ence can agamivbe computed according to the formula on p. 000,
substitutingyitf place of the previous factor 1/9, the new values 1/43,
2/45, . 2»9/45, respectively. We now obtain the following results
fl’DI}%),ﬁI‘ calculations: The probability of inference for p = 0.1 1
nQ% 0.001 (compared with 0.005 before); for p = 0.2, it is NOW
0011 (0031 before); for p = 0.5, 0.6, 0.7, we get 0.16, 0.22, 0.23
N 0.19, 0.21, 0.19 before), and for p = 0.9, we find 0.07 (0.05 before).

/ As was to be expected, the new values are markedly different from
the earlier ones, If we compare the inferred with the initial probabil-
ities we find, however, again that the numerical results are higher
foog values of p close to 0.6, and lower for values further away from

Let us now consider the same distribution of the initial probabilities
but assume that the number » of experiments is $00. We then arrive
at the very remarkable fact that now there is no noticcable change
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in the inferred probabilities. Except for negligible differences, all the
results remain the same as before when v(p) was uniform. If we pause
to reflect on this fact, we find that it is not so surprising after all. As
long as the number of experiments is small, the influence of the
initial distribution predominates; however. as the number of experi-
ments increases, this influence decreases more and more. Singce
Bayes’s Theorem is, mathematically speaking, a proposition applying
to an infinite number of experiments, we conclude that the above-
stated proposition of Bayes holds true independently of the giveny
initial probabilities, i.e., whatever the contents of the urn from which
the stone was drawn. O\

Conditions like those given in our examples, such as an ufn'with
a given distribution of objects, occur only very rarely. M’g:’é com-
monly, we may pick a die about which nothing will be kitewn except
that it seems a suitable object with which to test the@lternative ‘six
or nonsix’. The conclusions remain the same as.before: If z experi-
ments have shown #, successes, then, so long as /s small, we cannot
canclude anything from this since for small 7,@he"result of our infer-
ence depends mainty on the initial distribution, ie., on the general
make-up of the dice from which we havepicked our particular die. If,
however, # is a larger number, say 50Q\thén we can draw conclusions
without any further knowledge of JUm, tetal bedy.of ayajlable dice.
And we can say that there is indéed a very high probabulity that the
probability of success of the die we picked will lie close to the ob-
served frequency of successitOnce we have derived this fact, it appears
clear and almost obviougi\t is, however, quite remarkable to reafize
that it is a direct resultvof probability calculus and can be derived
only on the basis af\the frequency definition of probability.

A brief and\uséitl formulation of Bayes’s Theorem can be ob-
tained by subsiituting for the term ‘probability of success’ the
definition pfifhis probability. We can then state: If a sufficiently long
sequenceg&l: alternatives has shown a frequency of success a, we can
expect'with a probability very close to unity that the limiting value
of #ifs frequency will not be very different from a. This brings out
Clearly the close relation between the First and the Second Laws of
arge Numbers.

In the fifth lecture, we shall discuss problems of mathematical
statistics which are closely related to Bayes’s Theorem. It is indeed
the principal object of statistics to make inferences on the proba-
bility of events from their observed frequencies. As the initial
probabilities of such events are generally unknown, that aspect of the
inference problem which we have just discussed will prove to be
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essential. It explains why we can generally draw meaningful conclu-
sions only from a large body of statistical observations and not from
small groups of experiments.

THE RELATION OF BAYES'S THEOREM TOQ POISSON'S
THEOREM

It is not my intention to show how Bayes’s Theorem is reduced,
in the same way as Poisson’s Theorem, to a purely arithmetical pro-
position if we adhere to the classical definition which regards,proba-
bility as the ratic of the number of favourable events togthejtotal
number of equally possible events. This proposition 1&ags to the
prediction of empirical results only if we smuggle inteuy again an ad
hoc hypothesis such as: ‘Events for which the caleblation gives a
probability of nearly 1 can be expected to occurhcarly always, 1.,
in the great majority of trials’. This hyporfesis, as we know, is
equivalent to the frequency definition of probability in a restricted
form. By introducing this additional hyp. figsis we change the mean-
ing of ‘probability’ somewhere betweéd tht beginning and the end of
the investigation. Y,

From our point of view, a moredifportant aspeet of the question
is the relation inwthe dbsafldamencyrehvbry of probability between
Bayes's Theorem and theslaw of Large WNumbers {Poisson’s
Theorem), and the relatign of Bayes’s proposition (o the axiom of
the existence of limiting valucs of relative frequencies. At first sight
nothing seems m r(rcﬁsonablc than to identify the proposition: ‘If
a relative frequency z is found in a sequence of length # (r being a
large number), ipwill almost certainly remain nearly unchanged by
an indefinitdpFélongation of the sequence’, with the simple assertion:
‘The relatiye” frequency approaches a definite limiting value with
mer Sii}g n’ The essential difference lies, however, in the words
-almgost certainly’, and these words can be replaced by ‘nearly always'.
Ifia stone has been drawn from the urn and thrown » times (n being

;a'large n_umber), and the result 6 has been obtained i, times, 80 that
the relative frequency of this result is @ — ,/n, this experiment says

nothing about the behaviour of the same stonc in a prolonged
sequence of throws, If we merely assume the existence of limiting
values, and nothing concerning randomness, it is quite possible that
for almost all stones which have given the same value of n/n, = 4
1n 1 throws the limiting value of the frequency will differ considerably
from a, however large » may be.

Bayes’s proposition means that in practice this is not the case, and
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that the limiting value is nearly always only slightly different frc_am
the observed relative frequency /. Bayes’s Theorem Fims contains
a new statement, not identical with the premise used in its derivation
(i.c., the first axiom) and obtainable only by a mathematical deduc-
tion, which uses also our second axiom, that of randomness. Beca_u;\'fc
of the analogy of this theorem with the Law of Large Numbers, i 13
often called the ‘Second Law of Large Numbers',

These considerations have led us further thap [ intended into the
field of abstract arguments. and 1 will conelude by restating the two
Laws of Large Numbers and the First Axiom in the special form
adapted to the problem of throwing dice. A

{

THE THREE PROPOSITIONS O

In & casts of a die, a certain result, say 6, was obtaingd 7 times.
The three propositions are as follows: R4

(1) The First Axiom, which is basic Lo our definition C} probability,
says that in an indefinitely long repetition of thévsame game the
quotient s fn will approach a constant limiting a{a}Ue, this value being
the probability of casting 6 with this particular die.

(2) The First Law of Large NumberspNwhich is also called the
Bernoulli-Poisson Theorem, says that\ 1f"the game of # casts s
repeated again and again with the' 38 WRIIHAY A& Quficiently
large number, nearfy afl games will'yield nearly the same value of the
ratio n,fn. N\

(3) The Second Law of La¥gh Numbers, or Bayes’s Theorem, says
that if, for a great num!ggT})f different dice, each one has given #,
results 6 in a game of ALasts, where » is a sufficiently large number,
nearly all of these dideymust have almost the same limiting values of
the relative freqtfe\n'cies of the result 6, namely, valucs only slightly
different from ikicyobserved ratio n,/n. "

These formilations exactly delimit the three propositions; all that
must be added is that the first of them is an axiom, that is to say an
elnplr'_lga:}s aternent which cannot be reduced to simpler components.
T}%e:o\r:hc‘r two are derived mathematically from this axiom and the
gxigm of randomness. P{:oposit%ons (2) and (3, the two Laws of
Layge Numbfars,_ lose theq_’ relation to reality if we do not assume
from the beginning the axiom (1) of limiting frequencies.

GENERALIZATION OF THE LAWS GOF LARGE NUMBERS

ernoulli and Poisson and
form the classical Laws of Large
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Numbers. It may be worth while mentioning that we owe to Bayes
only the statement of the problem and the principle of its solution.
The theorem itself was first formulated by Laplace. In recent times
the two Jaws have been considerably supplemented and extended.
We are not going to discuss these contributions in detail here, be-
cause they do not affect the foundations of the theory of probability.
On the other hand, we cannot pass over them altogether. Some of
them are important for the practical application of the theory; others
have caused a controversy which is interesting from our point.of
view. Although the position is absolutely clear, many opponents\to
the frequency theory still try to interpret every new theorepy of ‘this
kind in such a way as to construct a contradiction to thefrequency
conception. This is especially true for the so-called Stroftg Law of
Large Numbers. w )

Let us first consider the kinds of propositiong which can reason-
ably be considered to belong to the class of Law$.of Large Numbers.
The limitations are, of course, more or less atfrary, In accordance
with a certain established usage, we suggesh the following: First of
all, the problem under consideration m&t’ contain a large number
n of single observations; this is to say’N'¥'must represent a combina-
tion of » collectives. The aim of the ealculation must be a probability
P, determined bywtherdbbsetibatigiysody other words, the final colles-
tive must be produced by the g;‘onibination of the # initial collectives,
P being therefore a functjonvef #. The last characteristic of the prob-
lem is the fact that P approaches 1 as » jncreases indelinitely. The
solution can thereforgalways be formulated in a sentence beginning
with ‘It is almost ceftain that when 7 becomes very large . . . Inthe
theorem of Bergoulli and Poisson, it is ‘almost certain’ that the
Felative frequeigy of an event in a sequence of # single experiments
is nearly eq1\1t§.} 10 its probability. In the theorem of Bavyes it 1s ‘almost
certain’,that the unknown probability lics close to the frequency
fo‘?n@'a“ empirical sequence. Of course these abbreviated formu-
lajap‘ns d‘o not express the full content of the theorcms; complete

Aotrulations have been given in the preceding paragraphs.

™\ The word ‘condensation’ is a very adequate ong for the description
of the mathematical facts expressed in the different Laws of Large
Numbers. Usually a probability distribution for a number of different
attributes is more or less uniform. Tn the cases to which the Laws of
Lalrge Numbers .apPly, the total probability 1 is ‘condensed’ in one
point or rather in its very close neighbourhood. The condensation
?ﬁ:o;;f:;‘g‘: ?IndAI:ll;fe pronounced with an increase in the vajue of

. ogously to the terminology used in analysis,
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attempts have been made to introduce into the theory of probability
the notion of convergence. In my opinion these attempts are not too
fortunate. The expression ‘convergence in the sense of probability’
does not add much to the clarification of the facts. This terminology
has been suggested by those mathematicians whose point of view I
have characterized at the end of my preceding lecture, and who are
inclined to make the theory of probability a part of the theory of sets
or of the theory of functions.

THE STRONG LAW OF LARGE NUMBERS

Various mathematicians, especially Cantelli and Pélya,® have ré-
cently derived a proposition which goes somewhat further tham the
theorem of Bernoulli and Poisson. As in the derivation of Bergoulli’s
Theorem, we again consider a group of # repetitiong ‘eF a simple
alternative {e.g., 0 or 1), and treat this whole groupw$'an element in
a collective composed of an infinite number of suchgebups. We have
considered the number n, of 0’s as the attribugelef cach group of n
observations. If we introduce now the letter X to’denote the relative
frequeney myfnr of zeros in a group, the thedrem of Bernoulli and
Poisson says that it is almost certain that'the frequency x is not very
different from the probability p.  wwwidbraulibrary org in

Let us now constder more closelylthe # single observations forming
an element of our collective. Lefy® be a number smaller than », so
that » — m = k is a positiye\ mamber. Among the first (m + 1)
results in a group there willbe a certain number of zeros, which may
be anything between zi{)i and m + 1. We denote the frequency of
0's in this part of thg,greup by x,. The corresponding frequency in
the first m -|- 2 observations we denote by x,, and so on, up to x;.
If, for instance 4= 10 and n = 15, we start by calculating the
frequency of 0% Within the first eleven observations. If six 0°s have
been recordediin the first eleven trials, then x; = 6/11. If the twelfth
trial give§ 20, then x, = 7/12; in the opposite case x, = 6/12. The
last fudguency to be calculated is x;, determined from the total
nmr\fb,ér of 0’s in the fifteen results. In fact, x, is nothing else but the
freguency denocted previously by x.

As attributes of an element in our collective, we now consider not
simply the value of x or x,, but thc whole system of values x;, X,

. . Xy, which are all positive and less than 1. We shall now perform
a mixing operation: Let p be the probability of a zero in the original
simple alternative (e.g., p = 1/2 in the game with an ordinary coin),
and ¢ a small positive number. Some of the & numbers x, to x, may
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belong to the interval from p — & to p + &, others may lie outside it.
If at least one of the k numbers x, to x, falls outside this interval, we
register this as an “cvent’. If all the & numbers fall in the inlerval, we
say that the event did not occur.

The collective derived in this way is again a simple and well-
defined alternative. We are interested in the probability P of the
oceurrence of the above-defined cvent in a group of » single observa-
tions. We can describe P as the probability that the relative frequency
of the result zere deviates by morc than & from the fixed valugeyp at
least once in the interval between the mth and the last (nth)'single
observations in a group of » experiments. This probabilify)can be
calcwlated by the repeated application of the rules desgtibed in the
second lecture. The probability P depends on tha four variables
n, m, p, and e. We are, however, not so much intereﬁ;tca. in the actual
value of P, as in a certain remarkable propeﬁg‘ ol this function.
Caleulation shows that P is always smaller thah.the reciprocal of the
product of m and £*: i.e., WO

D>
P smaller tham>—.
AWV

This relation is independent ofthe values of 7 and p.

Let us considerthiel breshibigos ey iFesult more closely. However
small the constant value addpted for ¢ (e.g., ¢ — 0.001, or & = 107%),
the expression 1/me? decredses indefinitely with indefinite increase in
mt, and finally tends 6 #cro. The number s, which is supposed to be
larger than m, will\of course also increase indcfinitely during this
process, When jtlh‘{probability of an event decreases to 0, the proba-
bility of its nofidecurrence increases to 1. The above relation can then
be interpreted’ thus: It is almost certain that between the suth and
the nth gbservations in a group ol length », the rclative frequency of
the g¥ent ‘zero’ will remain near the fixed value p and be within the
11‘1@%51 from p —e& to p 4 &, provided that m and » are both

_sufficiently large numbers. The difference between this proposition
*yand Bernoulli’s Theorem is quite clear: formerly, we concluded only
that the relative frequency x will almost certainly be nearly cqual to
p at the end of each group of # observations; now we add that, if m
is sufficiently large, this frequency will remain nearly cqual to P
throughout the last part of the group, beginning from the mth
observation. )

The amazing and unexpected part of this result is the fact that the
upper limit 1/ne® of the probability P is independent of a. This
result has given rise to the incorrect and unclear explanations 10
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which I have previously referred. Let us assume a constant value for
nr, say m == 1000, and consider steadily increasing values of n,
say n == 2000, 3000, 4000, etc. Obviously, the probability P of
the deviation in question increases with an increase in n, since the
number k — # — m of observations in which the deviation of the
relative frequency from the fixed value p can occur becomes larger
and larger. Calculation shows that despite this increase in the num-
ber of possibilities for the occurrence of the deviation, its probability
will not increase above the fixed limit 1/me% If e is, for instance,
0.1 and m s 10,000, then 1/me? is 0.01, and we can make the followinig
statement; We may expect with a probability exceeding 99 o, that
after 10,000 fosses of a coin the relative frequency of ‘heads \will
ahvays be included within the interval from 0.4 to 0.6 (i.e.,\between
p —eand p | ), no matter how large the total numbef of tosses
from which this frequency is calculated may be, whether it is a
million, or ien millions, or a larger number still, N

This formulation of the Strong Law of Large Mumbers, and the
way in which we derived it, shows clearly that/oth the problem and
its solution fit into the general scheme of thelfrequency theory with-
out difficulty. It is a problem of constructingh certain new collective
by means of the usual operations. This ig-all ¥ wanted to show; it is
not my purpose to give a discussion of li;lgghi%géagreg} %positions
which the publication of this propggtion provo wd? e

~

THE STATQ’STICAL FUNCTIONS

1 wish to use the fefnrinder of my time for the discussion of
another generalizatipn of the Law of Large Numbers,” which is of
mere practical intepest and forms a suitable link with those problems
of statistics witif'wiich we shall deal in the next lecture. We begin by
substituting 4/general collective with many different attributes for
the simph\:altemativc {1 or 0) which we havc been considering
hithertai As an cxample, we may use the game of roulette with its
thir‘ty\—fs,e"ven possible results, the numbers 0 to 36.
et us consider, as an element in a new collective, a group of »,
say 100, single games of roulette. The attribute of this new element
is a certain arrangement of 100 numbers from 0 1o 36, We may,
however, not be interested in the 100 individual results, but only in
the relative frequency of the 37 attributes, ie, in indicating the
number of times when 0, 1, 2, . . . and, finally, 36 appear in the
group in question. We call this the statistical description of the group,
and it is obvious that the sum of these 37 entries will be » = 100. If
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we divide each of these entries by », we shall obtain a sequence of
proper fractions with swm 1. These fractions vy, xy, X, X0o o . 1, g
are the relative frequencics of the occurrence of the different results,
0 to 36, in the group under consideration. These quantilies xg, Xy,
Xp, Xg . . ., with the sum I, describe what we call the frequency
distribution of the various results in the group of 100 experiments.

In the sense of the definitions given in the second lecture, the
transition from the original complete description of the groap to the
new abbreviated one is cquivalent to a ‘mixing” operation. A gisen
frequency distribution can be due to a great number of diffetent
arrangements. In the simple case of only two possible results, 0and 1,
and a group of, say, 10 casts, the distribution of 0.30 zergsiand 0,70
ones can be produced by 120 different arrangements, sinc€ three 0's
and seven 1's can be arranged in 120 different wayd, If the proba-
bility of each possible arrangement is known, thedprobability of any
frequency distribution can be calculated ac¢arding to the law of
mixing, by means of summations. O

It must be pointed out that the same frequency distribution can
correspond to different lengths of the grolip. For instance, the distri-
bution of three 0’s, two 1's, and five X34# a group of ten observations
is equal to that of fifteen zeros, tend’s, and twenty-f{ive 2's in a group
withn = 50, To ngﬁgﬁlm@%tm distribution of some attributes
in a certain experimental material does not necessarily involve the
knowledge of the numbey /e the experiments made.

The subject of our ifftcrest is, however, often not the frequency
distribution as such,(But some quantity derived from it. it 1s this
quantity which_is<gonsidered as the attribute in which we are
interested. Thig amounts to the performance of another mixing
operation, i which all distributions lcading to the samc value of the
attribute are ixed. A quantity of this kind, derived from # single
results,: bi;t depending only on their frequency distribution {and not
on th%{“arrangemem or on the total aumber »), is called a statistical
Jugrction.
¢ The Si'{npleSt example of a statistical function is the average of the
‘e qbservatu_ms. If fifteen OQ's, ten 1's, and twenty-five 2's have been
counted in a group of fifty results, the average is calculated by
dividing by fifty the followin g sum: '

(15 X 0y + (10 X 1) + (25 x 2) = 10 -~ 50 = 60;

this give‘s us the result 60/50 == 1.20. Another method of calcula-

tion, which leads to the same result, is to multiply each of the three

resuits (0, 1, 2) by its frequency in the distribution; in our case, the
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three {requencies are 0.30, 0.20, and 0.50, and the addition of the
three products gives

(0.30 % 0) + {(0.20 x 1) - (0.50 % 2) = 0,20 - 1.00 = 1.20.

We sce that the average depends in fact only on the numbers x4, Xy,
and x,, and not on the arrangement of the fifty results. Neither is it
affected by doubling the total number of observations, provided that
this involves doubling the number of results of every kind.

The average, or mean, of a number of results is thus a statistical
function. Various other statistical functions will be described in the
next lecture. We are now going to say a few words on the Laws of\
Large Numbers in their relation to statistical functions. A\

s ™

THE FIRST LAW OF LARGE NUMBERS FOR STATIS'T?ICAL

FUNCTIONS N\

The average of a sequence of # measurements whase single results
are either Os or 1’s is obviously equal to the ratioJof the number of
1’s to #. The Bernoulli Theorem may thereforg be'stated in this way:
If # observations of an alternative (0 or 1pare’ grouped together to
form an element of a collective, it is almestcertain that the average
of the r obscrvations will be nearly W&Iﬁg&gﬁg@gp)}w@yﬁ number
p, if n is sufficiently large. N\

Poisson’s generalization of Betiioulli's proposition can now be
formulated as follows: The n observations need not be derived from
a single alternative; it is al@e:admissiblc to calculate the average in
the case of n different aligrnatives, that is, to divide by # the number
of ‘positive’ results obfained in such a sequence of experiments. The
‘condensaiion of prebability” demonstrated by Bernoulli for the case
of n identical alterbgtives occurs in this case as well.

The next step/7tr he generalization of the theorem is mainly due to
‘Tschebyschy ..gl"schebyscheﬁ s proposition says that the results need
not be detdyed from simple alternatives; they can also be taken from
co]lectigés‘ with more than two different atiributes, We can, for
ingtagee, consider n games played with a certain roulette wheel, or n
gatngs played with different wheels, and calculate the average of the
n numbers representing the results of all games. If # is sufficiently
large, it is almost cerlain that this average will be ncarly equal to a
certain known number, which is determined by the probability
distributions of the # initial collcctives.

Certain recent investigations enable us to generalize the proposi-
tion still further, and in this new form it becomes a very important
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theorem of practical statistics. The phenomenoen of ‘condensation’,
first described by Bernoulli, holds not only for the average of
results, but essentially for all statistical functions of # observations,
if n is a sufficiently large number. In other words, if’ we observe n
collectives {(which may be all equal or diffcrent), and if we calculate
the value of some function of the » results which depends on their
frequency distribution (but not on the order of the observations nor
on their total number), then, provided » is sufficiently large, it is
almost certain that the value so obtained will differ but little from a
certain known number, calculated in advance from the probability
distributions of the n collectives. The expressions ‘almdst’gertain’,
etc., are, of course, abbreviations whose meaning must B8 interpreted,
according to our definition of probability, in the folfpwin gway. Ifa
group of # experiments is repeated a very large nuahber of times, and
if € is an arbitrary small number, the valuc calchlited cach time from
the » observations will in the overwhelming rﬁajori[y ol all groups
differ by less than e from the ‘theoretical®known value. The larger
# is, the greater is the majority of case in\s}hich this prediction turns
out te be true for a given constantwalhe of .

THE SECOND'LAH SR IRRE: RO BERS FOR STATISTICAL
“SSFUNCTIONS

Bayes’s Theorem,{iscussed in one of the preceding seclions, can
also be generalizedin such a way as to apply to statistical functions.
Let us imagh}e\n w that n observations have been made on one
collective whose distribution is unknown, e.g., # throws with a ston¢
of appargndly cubic form and sclected at random from 4 heap of such
stones,~Fxém » observations made with this stone (each charac-
teriz,et%by one of the numbers 1 to 6), we deduce a cerlain number
%5\ ch depends neither on the order of results nor on the value
+0f 1, but only on the frequency distribution of the resulis; £ 1,
_ (" therefore, a statistical function, According to the considerations of
{ '} the preceding sections, we must assume the existence of a certain
“theoretical value of L”, denoted by Ly, which is determined by the
probability distribution in the original collective, in our case, by the
six probabilities of the six sides of the stone; L, is unknown, since
we have assumed that the stone which served for the experiments has
not been investigated before. All we know about this stone is the

value of £ caleulated from the abservations.
The Second Law of Large Numbers, generalized for statistical
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functions, asserts that, with a sufficiently large value of n, the un-
xnown theoretical value L, will “almost certainly’ lie quite near to
the observed experimental value L. The original Bayes Theorem
was equivalent to the above statement for the special case of the
average of the results of a simple alternative; the “theoretical” value
was in this case the fundamental probability p of the event under
consideration. We can now formulate the general proposition: As-
suming that » observations have been made on an unknown collec-
tive and have produced the value L of a certain statistical function,
if 7 is a sufficiently large number it is almost certain that the unknown
theoretical value of this function, L,, characteristic of the distribugiony
in the collective under investigation, lies very near to the obsegved
value L. The way of interpreting the expressions ‘almos’t‘ggftain’,
etc., by means of the frequency definition of probability has been
indicated above. R4S

The proposition which we have now formulated thus allows an
inference into the nature of an unknown collectiye based on the
results of a sufficiently long scquence of expegifgiits. It is therefore
of an even greater practical importance thap-the First Law of Large
Numbers. [t is perhaps the most import@hi*theorem of theoretical
statistics. In the next lecture we shall ggnsider as an example of an
important statistical function the s@;gggjgg,ggﬁg;%% i a suffici-
ently long sequcnce of observatiogs-has given for this ratio a certain
value, say L = 1.1, the generalized Second Law of Large Numbers
allows us to assume that th.(‘theorctical’ value of L (i.e., the value
characteristic of the matesid} of our investigation) is nearly equal to
1.1. 1 do not intend to deal here with the mathematical characteriza-
tion of those statistloal functions to which the two laws apply.
Tnstead, I will clgse’this lecture with the following remarks.

O
\“ CLOSING REMARKS

In tlﬂs:i;:ture I have tried to elucidate a number of guestions con-
nectgd with the popular ideas of the Laws of Large Numbers, as far
& this is possible with a minimum use of mathematics. 1 had in
mifd a double purpose: 1n the first place, I wanted to acquaint you
with the content of these laws, which are indispensable to anyone
who has to deal with statistical problems in one form or another, or
with other applications of the theory of probability. Secondly, it was
especially important for me to investigate the part played by these
laws in the calculus of probability based on the frequency definition.
As T said at the beginning of this lecture, and also indicated in the
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previous one, many objections raised against my probability theory
have been directed against its supposed contradictions to the Laws
of Large Numbers. I hope that T have succeeded in making the
following two points sufficiently clear.

(1} Starting with the notion of a collective and the definition of
probability as a limiting value of relative frequency. all the Laws of
Large Numbers have a clear and unambiguous meaning free from
contradictions. Each of them amounts to a definitc prediction con-
cerning the outcome in a very long sequence of experiments, ¢ah of
which consists of a great number # of single observations, .,

{2) If we base the concept of probability, not on the nation of
relative frequency, but on the definition used in the &issical pro-
bability theory, none of the Laws of Largc Numbegss capable of 2
prediction concerning the outcome of sequence$hdf ‘observations.
When such conclusions arc nevertheless drawnstbis is possible only
if, at the end of the calculations, the mearigvof the word ‘proba-
bility’ is silently changed from that adopteyﬁaj the start to a definition
based on the concept of frequency. Nai{m ly, such a procedure may
lead to obscurities and contradictions, )

Before concluding, I must add arfather warning. It is impossible to
give absolutely correct formuldtions of the propositions we have
discussed if the usevofl Bormiiigraner gilithematical concepts. except
those of the most elementary naturc, is avoided. 1 hope that I have
succeeded in stating allthe essentials correctly. From the mathe-
matical point of view{the forrmulations which 1 have given are still
incomplete, lacking Marious restriction s, such as those concerning the
sets of admissible functions, as well as further formal maihematical
conditions. Those who are interested and possess the necessary
mathematjeal knowledge can find this information in the mathe-

matical fitgrature of the subject.
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FIFTH LECTURE

Applications in Statistics and
the Theory of Errors

¢O)
£\

THIS lecture and the next, which concludes this series, will Beydevoted
to a consideration of the two most important applicaﬁm}ns of the
theory of probability. We shall no longer concentrafe.on games of
chance. In the present lecture we will deal witharious series of
events, which occur in cveryday life, and whose investigation is
commonly called ‘statistics’. Y,

"

WHAT IS sﬂ)ﬁfﬂ‘gﬁﬁf?ib"m‘ym'g in

The word statistics has been iniérpreted as the ‘investigation of
large numbers’, or ‘theory of{frequencies’. This is not the literal
meaning of the word, but gy"sﬁtempt to make clear the sense which
it has acquired in modefn Tanguage. Long sequences of similar
phenomena which cansbe characterized by numbers form the subject
matter of statisticsyexdmples are: population statistics (e.g., birth
rates and death 1;{1{?5\); statistics of social phenomena (e.g., marriages,
suicides, incomes); statistics of biological phenomena (e.g., heredity,
sizes of diﬂég’eﬂ't organs); medical siatistics (e.g., action of drugs,
cures); rechadlogical and industrial statistics (e.g., mass production,
mass capsimption, most problems grouped today under the heading
of @perational research}; economic statistics (e.g., prices, demand).

hese and similar fields, the usual procedure is to collect em-
pirical material, draw general conclusions and use these to form
further conclusions which may be appliced in practice. Which part of
this investigation should be called statistics is more or less arbitrary.
We are not going to intervene in the struggle between different schools
of thought, the *general’ and the ‘mathematical’, the ‘formal’ and the
‘realistic’. All that is necessary for us is to delimit the field which we

135



£

/"

N

PROBABILITY, STATISTICS AND TRUTH

propose to cousider in these lectures. We leave aside all questions of
planning and carrying out statistical investigations, such as the
organization of a census, as well as measures which may be taken as
the result of the outcome of such investigations. It is, of course,
impossible to limit any ficld of research with complete rigidity. The
doctor whose patient has broken a leg does not ask for details of his
education or his future plans. He cannot, however, be completely
disinterested in anything that is important for the physical or mental
state of his patient. On ihe other hand, however, the way {elany
progress and increased cifectiveness consists in properly {ixing the
object of one’s attention and then procceding lo studg\it“along
varying lines of approach. \

The scope of our intcrest in the field of mass phaiomena and
repetitive events is indicated by the theory presente@yn (he foregoing
lectures. 1t is true that the starting point of a theory is always the
wish to classify and explain a certain group d{empirical facts. How-
ever, once the theory has been developedyve usually find that it
expiains only one of the many aspects{ of reality and we must be
satisfied with an understanding of thi§ One side.

The starting point of all our statistical considerations is the con-
cept of the collective, which is thigtabstract and idealizod equivalent
of the empirical "hHH GREIARY P menon. It is impossible to
sumup in two sentences thf:jsiabject of a discussion which is to occupy
fifty pages, but I will attempt to point out our particular upproach
to statistical problenis™ We shall consider different subjects of
statistical mteres%{ d-investigate whether and to what extent they can
be interpreted as_collectives or reduced to collectives. In cases when a
connexion withha’ collective is found, the empirical data can be dealt
with by meads’of our probability theory.

("

" K
N\

%" GAMES OF CHANCE AND GAMES OF SKILL

&

. Before entering upon our subject, we must return for a few minutes

(Jo the problem of games of chance, and consider an aspect of this

X

problfam which can serve as an introduction to the questions of
practllcf'a.l statistics, The public organization of games of chance is
proh}bl‘ted by law in most countries, or at least is subject to certaitt
restrictions. To apply these laws, a eriterion is required to distinguish
games of chance from games of skill. In some of the older regulations
games of chance were defined as ‘games of alcatoric character’: this
1s an ‘explanation by substitution® of the worst kind. since it ‘cxplains’
a well-known word by one which is generally unknown but has a
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scientific appearance. Most modern legislation seeks no definitions
of games of chance, assuming that the necessary distinction can be
made in each particular case by the application of well-known
general principles.

A game which is often played at fairs has repeatedly occupied the
attention of the law courts, It consists in catching in a cup held by
the player a ball rolling down a sloping board studded with pins. No
agreement could be reached for a long time on the nature of this
game, as to whether it is a game of chance or a game of skill. In many
other cases the decision is much more difficult. Roulette is a game of {
chance, chess is a game of skill. These extreme cases raise no ques-
tion. I all card games, even in those which nobody would consides)
games of chance, chance intervenes, if only by the random distribu-
tion of cards to the players. All kinds of intermediate cases-between
games of pure chance and those of pure skill are obviously'possible,
resulting from the combination of certain elements of\chance with
those of skill and wit required by the rules of the gathe.

A reasonable definition can be derived directly, from our concept
of a collective. A game of pure chance is a gameda which the players’
chances of winning, that is, the relative J¥%g encies of wins in an
infinitely long sequence of games, do not depend on their personal
qualities. In each practical case (exPqRENG-games.0) & p%tely mech-
anical character which work automatically without participation of
the players), the final decision can, be reached only by means of 2
sufficiently long statistical experinient, i.e., a prolenged sequence of
games. No a priori decision{ ., a logical deduction based on the
rules of the game, is E&ésjble. If sometimes the necessity for an
experimental test s ayer oked, it is only because this test has been
carried out so often that its results are well known to everyone. The
game of roulettedigah example of this kind. In accordance with the
position reachedMn the preceding lectures, the randomness of the
results of thg gdmes of dice and roulette is nothing but a postulate
borne out"\by experimenral results. In this way the whole field of
games _ofichance finds uniform treatment.

JFatthie purpose of the legislator, however, it would be better not
tg chnfine our definition to games of pure chance. An appropriate
formulation of the law might be as follows: All games are prohibited
in which the distribution of wins is found in the long run to depend
only very slightly on the skill of the individual players or to be
entircly independent of it.

In the case of the above-mentioned game at the fair, the path
taken by the falling ball is directed by chance; but the success in
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catching it depends essentially on the speed and correct judgment
with which the cup is placed in the right position by the player, in
fact, on his skill. To make this game one purely of chance, one might
require that the cup must be brought in position before the ball
starts rolling, different prizes being assigned to different positions.

MARBE'S ‘UNIFORMITY IN THE WORLD’

I now leave the games of chance and turn to a borderline questien
between biological and social statistics, which is closcly rclaed  to
problems of games of chance. This subject has been discyssed in a
comprehensive work entitled Uniformity in the World (arid3h certain
other works), the German philosopher Karl Marbelideveloped a
theory which can best be iltustrated by an exampley

A husband, whose wife is imminently expecting ™ child and who
is anxious for male issue, goes to the registranofibirths and looks up
how many boys and girls have been born inthe last few days. If the
number of girls has been comparatively fa¥ge, he considers that he
has a good chance of becoming tilq.félhler of a son. The general
opinion is that this line of thonght i§feclish. Marbe, however, says:
‘Our statistical investigations shew ‘(and this fact has so far been
overlooked) that*tHe’ Eﬁi‘l@(’:ﬂﬂﬁfﬁpfﬁiﬁather is not absolutely un-
founded’. Marbe supports ¢his' conclusion by statistical data con-
cerning about 200,000 birth registrations in four towns of Bavaria,
which show only one ‘r@ity of seventeen consecutive births of children
of the same sex, andeot a single such run of greater length. The study
of long runs is ano\ te basis of most attempts to arrive at 4 gambling
system. In his ook Marbe actually gives suggestions on how to
improve thizchances of winning at Monte Carlo by an appropriate
selection of games.

Mg&s Problem has been the subject of many discussions, and
Marbes himself has added two supplements to his original two-
velume work.2 It interests us in so far as it is related to the founda-

(t0ns of the theory of probability. Marbe’s idea is obviously that once
) seventeen male children have been born in succession in a town, the

probgtbi]ity of the next child being a female becomes a practical
certainty. If we should consider the successive birth registrations as
a f:ol‘lectlve with the alternative properties “F* (female) or ‘M’ (male)
(similar to the results in a game of ‘heads or tails”), the principle of
randomness would lead us to expect the distribution of #M’s and F's
In the partial sequence formed by all registrations following seven-
teen consecutive AMs to be exactly the same as in the collective as @
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whole. This selection is in fact nothing but an ordinary ‘place selec-
tion’, which we assumed did not affect the relative frequencies of
different atiributes in a collective. The question arising from Marbe’s
uggested ‘statistical stabilization” is thus: Does the sequence of birth
registrations, with the sex as the attribute, possess the properties of a
collective? Tt is obvious that the answer can be found only by
empirical methods. All attempts to disprove Marbe’s theory of
statistical stabilization by a priori considerations or logical argu-
ments are useless. The problem whether a given group of statistical
results should or should not be considered as a collective lies at the
centre of most difficulties of practical statjstics. O\
"N\

ANSWER TO MARDBE'S PROBLEM

]

Tt must be stated first of all that, despite the enormdds quantity of
statistical data compiled by Marbe, he has not brofight forward any
stringent proof of his assertion. A run of fength {¥bas occurred only
once in his material; that means that he has,only one example by
which to judge what happens after a run@f*this length. Thus, the
partial sequence of registrations followiig'euns of 17 malc births con-
sists so far of one element only, whereas conclusions relative to the
statistical distribution in a sequenedJaiir-ddibrawnosmly after the
sequence itself has reached a consi@erable length. On the other hand,
neither does this result say afiything against Marbe’s hypothesis.
Other facts are therefore required for the confirmation or refutation
of Marbe’s theory® o\

Our theory cnab]a%{gs ‘1o devise various tests by which mathe-
matical conclusioms_can be compared with the results of observa-
tions. The possibility of such indirect arguments is one of the
essential advantages of any theory. By means of the fundamental
operations 8f the theory of probability, we can derive from the given
collective with the attributes M and F and approximate distribution
0.5/0.55 anew collective whose elements are sequences of n observa-
tignseach, and whose distribution determines the probability of

sefsountering exactly x runs of length 2 in a finite sequence of length
w! By introducing the special values m = 17 and x = 1 into the for-
mula obtained in this way, we obtain the probability of one single
run of length 17 being found in a certain number of experimental
data. Using m — 18 and x == 0, we can calculate the probability ofa
complete absence of runs of length I8 in the same material, These
results are interesting in connexion with Marbe’s views, since the
oeccurrence of just one run of length 17 and the absence of any longer

139



PROBABTLITY, STATISTICS AND TRUTH

runs were the main arguments for advancing his hypothesis. If we
could show that these results are in accordance with the predictions
of probability calculus, this would be a strong argument for the ran-
dommness of the distribution of male and female births, i.c., for the
hypothesis that the birth register shows the characteristic properties
of a collective. :

The numerical calculation for » — 49,152 (this being the length of
one of the four sequences investigated by Marbe) gives, for 4 run of
length 17, the following probabilities: 0.16 for one occurrence; 0202
for two or more occurrences; 0,82 for no occurrence. Tn ong, of\the
four sequences of Marbe, the iteration 17 occurred once: in ghedgther
three it did not oceur at all. Theory and cxperiment arc dias, to say
the least, not in contradiction to each other. For theyn of length
m = 18, the calculated probability of occurrence (single or repeated)
is 0.09; the probability that such a run will not,deédr at all is thus
0.91. The fact that o run of length 18 was obsemed in four sequences
is in accordance with this theoretical prediction. We have no space
here to enter into more details concerning the analysis of the experi-
mental data and their comparison with¢the predictions of the theory
of probability. Suffice it to say that tHSyEsult of Lhis comparison is a
complete confirmation of all the cprig]ﬁsions drawn from the assump-
tion that the birthwegistbriskilociftbivg.if s examples, I might quote
the expected numbers of the}ijuns ol lengths 2, 6, and 10, respec-
tively. They are 6138, 385, and 24.3, whercas the corresponding
average numbers in the four sequences analysed by Marbe were 6071,
383, and 24.3. T have distiissed the details in one of my earlicr papers.
The more recent of\Marbe’s asscrtions, although more subile, point
in the same dir¢tion as the original ones and can be refuted by
calculations gfdlogous to those just reported.

Everybady.interested in the foundations of probability must be
grateful toMarbe for collecting and organizing such a large amount
of stat\{sﬁcal material. It provided the theory of probability with the
firstexample of a large collective not taken from the ficld of games
o ehance. The conclusions which we draw from this material are,

{\however, diametrically opposite to those drawn by Marbe himself.
T];e very good agreement of the results of the probability caleulations
with the statistical data shows us that the register of births approxi-
mates to a high degree the properties of a collective, in particular
that of randomness.

Returning now to the fathers who may expect the birth of & son
because they have found that 17 girls have just been born in succes-
sion {few fathers will ever be in thig position), we conclude that about
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504 of them will be disappointed and will return to the registrar to
add another F to the run of female births, and about 50 % will break
the run by registering a male birth.

THEQRY OF ACCUMULATION AND THE LAW OF SERIES

A peculiar counterpart of Marbe’s Theory of Statistical Stabiliza-
tion is the ‘Theory of Accumulation’ propounded by anciher philo-
sopher, Sterzinger.* A biologist, Paul Kammerer,5 adopted and used |
it as a scientitic basis for a ‘Law of Serfes’, which is a conception
widely accepted by the public. e

A proverb says ‘troubles seldom come singly’; and Kamgugter
assumed that the same must be true for all kinds of other evedts as
well. N

More precisely, the Law of Series amounts to the dsSertion that
short runs occur unexpectedly frequently, supposcaly more fre-
guently than they should according to the theory of probability. For
example, Sterzinger observed the intervals at wilich buyers entered a
shop. On the average, 30 buyers arrived cacli Heur; it was, however,
quite rare that one buyer should enter theshép in an interval of two
minutes. Most 2-minute intervals werg €itler ‘empty’, or 2 or more
persons entered the shop in this tizac dHesinges-greng far-reaching
conclusions from observations oflhis kind; he saw in them a dis-
proof of the applicability of {he theory of probability to actual
phenomena. In considering this question our point of view follows
directly from our general ganception of probability. Mass phenomena
1o which the theory o"\g@obability does not apply are, of course, of
common occurrence, 1h other words, not all repetitive events are
collectives in the thedretical sense of the word. An analysis of the
experimental mgaterial is necessary to show whether a given mass
phenomenon/fulfils the conditions of a collective or not; but super-
ficial, ins ifichive estimates are of no value, In order to point out a
valid dqé&ion of the experimental result from the theory, it is above
all nefgssary to derive from the theory mathematical conclusions
wh‘icl\l will permit a comparison with experience.

N\ An example of such a conclusion is the following: If & sequence of
identical events is distributed at random over a certain period of time
and one event occurs on the average every ¢ minutes, then the pro-
bability of an arbitrary time interval of the length of @ minutes
witnessing one (and only one) event is 0.37 while 0.63 of all intervals
will either be ‘empty’ or contain two or more events. Therefore
Sigrzinger's experiments would be a valid argument in favour of the
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accumulation theory only if he should have found more than 2/3 of
the 2-minute intervals empty or having 2 or more buyers cnter the
shop under observation. This could certainly happen and if it were
observed it would indicate that this sequence of obscrvations does not
satisfy theconditions of a coliective. Unfortunately, Sterzinger’s actual
observations are entirely insufficient for deciding this question. His
Own opinion was obviously that the mere fact of the repeated oceur-
rence of 2-minute intervals with less or more than | buyer is already
a decisive argument against the validity of the theory of probabiﬁ‘ty.

Here is a further example of an crroneous application ofthe Law
of Series: Statistics showed the mean weekly number of sulcidesin nor-
mal times in Germany to be 1 per 250,000 inhabitants. J e often are
we to expect the newspaper in a town of 250,000 inhaBitants Lo report
a ‘series of suicides’, namely, three or more in one4yeck ? Calculation
shows.that the probability of more than 2 eveuts ol this kind occur-
ring in one week is 0.08. If we assume that the register of snicides has
the properties of a collective, we can expedtthe number of suicides
per week to be 3 or more in about 4 weeks'ot each year (52 x 0.08 =
4.16}. Only if a much greater freghency of ‘suicide series” were
abserved would there be a reason for speaking of an ‘epidemic of
suicides’ as is usually done in sycf'cases. An actual occurrence of an
‘epldemic” of thiswkmtlw%ih}i“ﬁo‘f}ig-ifb some internal relations
between the single cases. Jammerer's voluminous work docs not
contain a single examplesin which the statistical marerial is sufficient
to decide the questiondwhether the corresponding sequence of events
has the character{{@}ﬁropcrtics of a collective or not.

< LINKED EVENTS
Otllnfl:r Statistical investigations have produced much evidence of
Iepelltve events which are in fact not simply elements in a collective,

butmay be considered as obeying a certain law of series. We prefer,
heWwever, not to use this term, which historicaily has always implied

;;éj contradiction with the theory of probability. No contradiction
) ©Xists, if the events are correctly interpreted. A typical example of a

sequence of events of this kind, which we call *linked’, are deaths

from‘a contagious disease, such s smallpox.® It is a priori clear that

the distribution of these events must be fundamentalty different from

for instance, that of deaths by suicide. The mathematician G. Polya

I}as developed an elegant method for treating such sequences of

linked events according to the principles of the theory of probability-
The distribution of deaths due to some noncontagious disease can
142



APPLICATIONS IN STATISTICS

be illustrated in this way: An nrn contains a number of white and
black balls. Every month a ball is drawn from the urn by each
inhabitant of the town. A white ball means life, a black one, death
from this disease. The proportion of black balls in the urn is deter-
mined by the frequency of the deaths due to the cause under con-
sideration. This *‘scheme of urns’’ means only that the probability of
the occurrence of a certain number x of deaths can be determined in
the same way as the probability of drawing x black balls from the
urn. After the draw, the ball must be returned to the urn before the
next draw takes place. :

This picture ceases to be correct if the cause of death is in any way,
contagious. The occurrence of a single death increases in thi§ case
the chances for the repetition of this event. According to Pdlya, this
sitnation may be illustrated in the following way: Each time 2 black
ball is drawn from the urn, not only is the same ball replaced, but a
certain number of new black balls is added. If woadopt this repre-
sentation we are no longer dealing with one givehyinitial collective
them is known in principle, since it depends only on the original
proportion of black balls and the numbeg 0*black balls added each
time. By applying certain fundamental gperalions repeatedly, we can
derive a final coliective, whose elemptsiBravkguenges-ofiw draws, »
being the number of inhabitants. Pdlya has shown that in this way
a comparatively simple formula is'obtained which permits the calcu-
lation of the probabilities of“different numbers of black balls in »
draws, or of 0, 1, 2, 3, . {\deaths per month being caused by the
disease under consideration.

The following figutes from the Swiss statistics of deaths from
smallpox from 187710 1900 show the agreement of theory and
observation. Thé average number of deaths per month was 5.5; no
deaths were redotded in 100 months, 1 death in each of 39 months,
2 deaths in@c'h of 28 months, 3 in each of 26 months, 4 in 13, . . .,
15 in 3, months, and so on. Pélya’s theory of linked probabilities
leadsetmder appropriate assumptions, to the numbers: 100.4 months
i Which no deaths would be expected; 36,3, 23.5, 17.5, 13.8 months
withl 1, 2, 3, 4 deaths, respectively; and 3.0 months with [5 deaths
cach. Without linkage, that is, according to the ordinary theory of
independent events corresponding to draws from an urn where each
ball is replaced immediately, the numbers would be: 1.2 for no
death; 6.5, 17.8, 32.6, 44.9 for 1 to 4 deaths, respectively; and 0.1
for 15 deaths. Comparison of the two results illustrates strikingly the
superiority of the correct theory over the primitive one. It is difficult
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to realize the full influence of the contagion on the distribution of
deaths without the help of a quantitative theory. For this influence
does not merely consist, as one might expect, in an enhanced fre-
quency of long runs of deaths, but it changes the whole distribution
of runs, from the shortest to the longest.

We shall have to return to the effect of linkage (or “ufter-cfiects’) in
the next lecture, when we shall speak of certain phenomena in
physics in which these effects occur in a still more general way.,

Q

N

THE GENERAT. PURPOSE OF STATISTICS )

2\

We have reviewed a number of special cases which_cqable us to
understand a Tittle better the general problem of theytatment of
statistical results by means of the theory of prébability. 1 have
already mentioned that Marbe’s Problem bripgs s close to the
central problem of statistics, that of finding\OUt whether a certain
group of statistical data can be considered s collective or not. The
general problem can be formulated thus¢ A’certain sct of statistical
data has been collected, such as dala oncerning the number of
marriages in different parts of the codutry in a scquence of years. The
question then arises whether this.sebof figurcs has the propertics ofa
collective, or, n¥dVe” &P&'&Hﬁ‘,@ﬁ%'ﬁ?ﬁﬁgnim of a finite sequence
forming part of an infinite Sequence with the properties of a collec-
tive, If this is not the cage, can the group be reduced in one way or
another to one or mor§, eollectives? An example of the latier type
was the statistics f@eaihs from smallpox which we discussed in the
preceding section. The observed scquence of figures in (his case did
not possess thequality of randomness required of a collective; it was,
however, possivle to reduce these figures to a certain system of collec-
tives. Suehy'd reduction enables us to make certain predictions
concerfiig’ future events. Later, I shall show by means of other
exanibles what can actually be achieved in this direction by the theoty
oftvprobability. First, however, I should like to defend the above

tatement of the purpose of theoretical statistics against certain

) objections which 1 feel can be raised against it.

The concept of a collective was first derived from the analysis of
statistical date. For example, in the first lecture, when [ defined the
probability of death, | used the statistical data concerning the
number of deaths of insured persons, 1t might be said that it is surely
not logical to say now that the fundamental problem of statistics is
to investigate whether such systems of empirical data are collectives
or not. This is, however, only a superficial objection, and everybody
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acquainted with the methods of exact science can easily resclve the
apparent contradiction.

Newton's theory of gravitation led to the well-known corclusion
that the orbits of the planets are cllipses with the san at the focus.
Kepler’s determination of the elliptical character of the orbits of the
planets was one of the starting points of Newton’s theory. We know,
however, that not a single one of the nine large and several thousand
small planets revolves in an exactly elliptical orbit. One of the most
important problems of mathematical astronomy is to explain all ob- »
served deviations from the elliptical paths by means of forces acting
in accordance with Newton’s law. In the same way, we are convi,ng‘ed
that Maxwell’s equations of electrodynamics correctly descrike all
electrical and magnetic phenomena in the world (with the excEption
of those involving very rapidly moving media). The explanation, by
means of this general theory, of the details of the procegsés occurring,
for instance, in different electrical machines nevertheless remains an
important, practically inexhaustible, part of tdeodretical electro-
dynamics. To state that these ‘mental cgtpe?iments’ underlying
Maxwell’s concepts and equations do notiditectly correspond to
some reality does not amount to an objeétien to his theory. We can
only expect to find in nature a certain gpproximation to the idealized
conditions assumed by Maxwell in Jfis. d5drelibRsy org.in

The objections to the theory of\probability which point out that
data found by statistical investigations never correspond exactly and
often not dircetly to the idedlized sequences culled collectives must
be met in the same way. /An exact identity between theoretical pre-
mises and rezal conditi ¥ not required, but only a similarity which
makes a successfuPapplication of the theory to empirical data
possible. The que\s’tion that interests us is, therefore, what can be
achieved by practical application of the theory of probability founded
on the abstzagtrconcept of a collective?

N

.

*

LEXI8’S THEORY OF DISPERSION

y '“‘Ifh;:’ German economist, W. Lexis,” has enriched stalistics with an
ided which leads to a very convenient method of comparing an
observed statistical sequence of figures with a collective. T will explam
Lexis's Theory by means of a small statistical investigation which
every one of you can easily repeat.

The subject of the investigation is the frequency of occurrence of
the letter ‘@’ in a Latin text, the first chapter of Casar’s De Bello
Gallico. In considering the first 2000 letters, divided into 20 groups
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of 100 letters each, we find 2 groups with 5 «'s in cacly, 3 groups with
6, 3 with 7, 3 with 8, 2 with 9, 1 with 10, 2 with 11, 2 with 12, 1 with
13, and, finally, 1 with 14. Aitogether the number of «’s is 174, and
the mean frequency of this Jetter in a group is 174/20 — 8.7. The
question which we wish to answer is: How does this statistical result
compare with the result which we would obtain by placing in an urn,
in an appropriate proportion, a large number of tickels, with one of
the 25 letters of the Latin alphabet printed on cach, and making 100
draws of 20 tickets each? The appropriate proportion of «. tickets
would be 8.7%, since 8.7 was the mean frequency of this letigr I our
experiment. RAY.

To solve this problem, we could proceed by first (;alg:\ulaling the
distribution in a collective whose elements are seriesydf 100 draws
from the urn, and whose atiributes are the differenpossible numbers
of ¢’s in a draw. We could then compare this edwiputed probability
for0,1,2,3, . . .a's with the empirical relathe frcunIlcics we have
quoted. In this way we find, for instance,,l‘\qrthe probability of 6 a’s
the value 0.10, for that of 8 a's, 0.14 ¢ We should therefore expect
theoretically 20 x 0.10 = 2.0 groupd©F the first kind and 20 x .14
= 2.8 groups of the second kind, in@total of 20 groups. Both kinds
of groups occurred actually 3 timés in the empirical table. Is this
a confirmation ef.thalhodiprerynetilt is difficult to answer this
question. First of all, one shauld not be satisficd with comparing the
results concerning these4wo kinds of groups; the calculations should
be extended to all pdssible frequencies, Le., to groups containing
from 0 to 100 a2s¢To judge correctly the comprehensive table of
results obtained in\t\lis way, one obviously necds some upambiguous
measure to gxpress quantitatively the degree of agreement or dis-
agreement bebween theory and experiment, We need some kind of
average /of“the deviations of the experimental values from the
theorafical ones. Lexis’s Theory attempts to deline such a measure.

It engbles us to express the relation of theory and experiment by @
single number,

O
\

THE MEAN AND THE DISPERSION

To ef&plain Lexis’s Theory we must first describe the meaning of
?he notion ‘dispersion’, applied to a sequence of numbers. Dispersion
is g st_atistical function of the kind discussed at the end of the
preceding lecture, and one of the most important among them.

1 assume that all of you know that by adding the single results
obtained in measuring repeatedly a physical magnitude and dividing
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the sum by the total number of measurements we obtain the so-called
‘average’ of the magnitude in guestion. We have already said on a
previous occasion that the average is the simplest example of a
statistical function. In the above example, the 20 results ranged
from 5 to 14, and the average was 8.7. We can now calculate the
difference between the average and the single values used in its
calculation. We obtain in this way a new sequence of 20 numbers,
partly positive and partly negative. The value 7 occurred three times
in the original sequence; the sequence of dilferences therefore con-~g
tains the number -~ 1.7 three times. The value 11 occurred twice; the
sequence of differences contains two numbers 2.3, and so on. )\

The method by which the average, or mean, is calculated t}‘ssurés
that the sum of all the positive and negative differences musf\be zero.
The list of differences occurring in the above-discussedyexample is

as follows: RS
No. of accurrences Differences '

2 — 37 N
3 — 2.7, ~ &%and — 0.7
2 0.3 30
H 1.3
2 3 and 3 .
1 ) wﬁﬁ,%r;r@%@arary.org.m

Thus the sum of the neghtive differences is 2 x 3.7 - 3 X
(273 1.7+ 0.7) = 7.4 + 183 = 22.7; the sum of the positive differ-
ences is the same, Tt is thg:"fgfore obvicus that the arithmetical mean
of the deviations fromithe average cannot be used as a measure of
variability of the single observations. The simplest way to arrive at
an appropriate mastire of the variability of the results is to square
the single deviafions and to sum these squares, which are all positive
numbers. Wél%eﬁne the ‘dispersion’ or the ‘standard deviation
squared’ ,gfva’ sequence of numbers as the arithmetical mean of the
squares'of all deviations from the average. Clearly, this quantity is a
goodimeasure of what we should intuitively cali the variability of the

ven’ sequence of numbers. The smaller this variability, ie., the
gosier the single numbers to their mean, the smaller is the dispersion.
When all the given numbers are equal, they must be equal to their
mean, and their dispersion is zero; and obviously, this is the only
case when this happens. In our example we have to add two squares
of — 3.7 to three squares of — 2.7, — 1.7, and — 0.7 respectively;
this gives 2 x 13.69 - 3 x (7.29 + 2.89 4 0.49) = 27.38 + 32.01
= 59.39, We have further to add twice the squares of 0.3, 2.3, and
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3.3, as well as the squares of 1.3, 4.3, and 5.3 (together 48.27), The
sum total of all the squares is 140.20, and 140.20/20 == 7.01. This is
the dispersion of the results under consideration.

It can easily be shown that the dispersion defined above pussesses
the characteristic properties of a statistical function. In fuct, the
order of the single results is obviously irrelevant for the value of the
dispersion; if the total number of observations is doubled and each
observed value occurs twice as often as before, the denominator and
the numerator of the fraction used for the calculation of the disper-
sion are both doubled and therefore the value of the dispersjdmifself
remains unchanged. "\

Ny
COMPARISON BETWEEN THE OBSERVED AND,/MP EXPECTED
VARIANCE NS

Lexis now compares the dispersion of the gbserved resuls, i.e., the
empirical value of the variance, obtained?in"the way we have de-
scribed, with a theoretical value calgylated for the corresponding
collective by means of the theory of h¢bability. Let us draw 100
tickets from an urn containing 87 @\tickets in 1000. If similar draws
of 100 tickets are repeated g grcdt™ number of times, cach group of
draws can be con‘ﬁfﬂé’ré’t‘?"[&u}m’ SRmEAN A collective, with the number
of &’s as the attribute. By applying the operation of combination to 20
such elements we form a%ew collective whose elements consist now
of 20 groups of 100 drgws each. Any magnitude which in a given way
depends on the 2000 resulls arranged in 20 groups of 100 draws can
be considered asgthe attribute in the newly formed collective; e.g. the
dispersion of, theé 20 values of the frequencies of the letier a4 is such
an aLtribuF By the repeated application of the operations which we
have diseussed in the preceding lectures, it is possible to calculate
the disteibution in the new collective and to find the probabilities of
the ‘Pessible values of this dispersion. For instance, it would be
passible to calculate the probability of the value 7.01 which we have

{\petually found for the dispersion,

There is, however, another method of comparison which is more
appropriate; this we shall now describe. We consider a collective
with attributes represented by numbers. By multiplying the numerical
va]uf: of each attribute by its probability and adding the products, We
obtain the ‘expected value’ of the attribute, Whichcis also sometimes
called the ‘mathematical expectation’.

A gambler who has 209/ probability of winning 10 shillings in 2
game of chance, 309, probability of winning 20 shillings, and 50%
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of winning nothing can say that his mathematical expectation is to
win 0.20 % 10 + 0.30 x 20 = 8 shillings, The meaning of this
expected value is clear: it is the average win in an indefinitely long
scquence of games.

There is an algebraic method for calculating the ‘expected value’
of an attribute in a collective of the kind under discussion which is
formed by successive combinations of a number of initial collectives.
Let # be the number of groups (in our case, # = 20), z the number
of games in a group (in our case, z = 100) and p the probability of
the result in question in a single group (in our case 87/1000 = 0.087);
Under these conditions, the expected value of the dispersion is '&ivgn
by the formula A\

s ™

n—1
7

L
We are not going te show how this formula is deriveg}, it is a purely
formal mathematical problem, which has nothing*to do with the
principles of the theory. By inserting into thisJormula the values
B =20, z = 100, p = 0.087, we obtain the ¥alue

12 x 100 x 0.087(1 — 8087 = 7.58

] ‘»fﬂ}w}?dbraulibr‘a]'y_or‘g_in .
for the expected dispersion. Thigu8'the average dispersion which we
may expect to find by repeatedidrawings of 20 groups, each of 100
single tickets. Lexis compazgsthis theoretical value with the empirical
dispersion (in cur case, 741)'and sces in the ratio of these two values
an appropriate meas-{q‘ ‘of the degrec of agreement of thecry and
observation. In théwcase under consideration, the ratio is 7.01/7.35
— 0.928, and thisis'not very different from 1. According to Lexis,
this result affefdy’a confirmation of the hypothesis that the occur-
rence of thé/lefter ‘@’ in a particular Latin text is approximately
randomNi.the sense in which this word was used in our definition
of a g-c;ﬂ%ctive.
\m*, “LFX1s’S THEORY AND THE LAWS OF LARGE NUMBERS

T,

(L - p)

Lexis's Theory can be founded on the general Laws of Large
Numbers for statistical functions which we discussed at the end of
the last lecture. ] can only give a rough idea of this derivation, be-
cause it is mainly of a mathematical character.

We start with 1wo statistical functions of n observations, the mean
D and the dispersion $2 The first of these is found by adding up the

149



/N

N\

PROBABILITY, STATISTICS AND TRUTH

results of the n experiments and dividing the sum by #, the number
of experiments. In our case D = 174/20 — 8.7. The dispersion $2is
calculated by subtracting D from each of the n single empirical
values and finding the arithmetic mean of the squares of these differ-
ences. In our example, S* was equal to 140.2/20 = 7.01. We denoted
the number of single observations in each of the # experiments by 2.
(In our example n = 20, z = 100.) We can now find the ratio
Djz = d, and in our case d = 8.7/100 = 0.087. This can be called
the average of the # relative frequencies, whereas £ was the avgrage
of the n actual results. Previously, we have considered this number 4
as being practically equal 1o the unknown probability p of the'letter
‘@ and we used it above in this way in approximating thévexXpected

variance n_;-_l zp(1 — p) by ol zd(l —d). N
o .

The more basic approach to Lexis's Theory Lids 0 considering the
ratio of the dispersion S* to this product S zd(l - d) as a
> on

statistical function, This ratio, which exe\éﬁ for the factor (1 - 1)fa,
is known as Lexis’s Ratio, \$
52
L= A2

www.dbl‘aulilgﬁ?’dflorg,ﬁi
is, indeed, a statistical fupgtion, since it is derived from the two
statistical functions S? and¥, while z is a fixed number independent
of the results of the gxperiment. Assuming that 2 is a sufficiently
large number, twoi?;enclusions can be drawn from the Laws of
Large Numbers #pplied to L.

First, the valtg of L observed in a sequence of # experiments on a
collective whose distribution is known can be expected to differ only
very slighly/from its expected value calculated from this distribution.
If the element in the collective under consideration is the observation
of gx{\lentical and independent simple alternatives, it is found that the
eXpected value of L is equal to 1. Thus, if » is a large number, We

o~expect the value of L derived from » actual observations of this kind
*i0 be nearly 1.

Second, if the collective is not completely known, we are entitled
to assume that the (unknown) theoretical value of L which corres-
ponds to this collective is close to the observed value L. If this
observed value L is not very different from 1, while the nuniber #
of observations is sufficiently large, we may presume that the collec-
tive under consideration is at Teast approximately one which leads to
a theoretical value of L equal to 1, This consequence of the Second

150



APPLICATIONS IN STATISTICS

Law of Large Numbers is of the greatest practical importance in the
application of Lexis’s Theory.

The reader may have noticed that in the first discussion of Lexis’s
ideas we have compared §2 with

n—1

zp(t — p)

L
whereas in this section the value of §2 was divided by
zd(1 — d).

The difference is explained by the fact that now we are considgxing
only very large (strictly speaking, infinitely large) values of #,and
with an indefinitely large value of » the ratio {#n — 1)/n becomes
practically equal to 1. N

R
NORMAL AND NON-NORMAL DISPERSION

In the statistics of the occurrence of the lgttep *¢’ in Casar’s De
Bello Gallico, we found a satisfactory ageenient of the observed
variance (7.01) with the theoretically eXpested one (7.55). In other
words, Lexis’s ratio was not very diffekent from 1. The assumption
that each experiment is a comhmﬁqgrgf“%,jaque_ppg@ﬁnt simple
alternatives appears to be fustifie@Nin this case.

Lexis’s method is always applicable when each of the » numbers
under consideration is the autcome of the obscrvation of z simple
alternatives. Examples of‘this kind are the statistics of deaths in a
community of z individilals or the statistics of male births in different
groups of population,\é.g., in different towns of a country, or in a
single town in diffdrént years. In general, the number of observations
z is in those gages a more or less variable one. For simplicity we
prefer, howe¥er; to ignore this complication and to assume that we
compare, §eqliences of observations of practically equal size.

Tt wahld be quite wrong to expect that in all such cases the results
will_beé similar to those obtained in the example dealing with the
Jogeurrence of the letter ‘@’. This and similar cases, in which a value

\ol‘i nearly 1 is found for Lexis’s ratio, belong to the class of pheno-
mena described as having ‘a normal dispersion’. As we have seen, the
occurrence of a normal dispersion permits definite conclusions with
respect to the nature of the underlying collective.

We are now going Lo consider cases in which Lexis’s ratio is con-
siderably larger or smaller than 1. In these cases we speak of super-
normal or subnormal dispersion. Our first problem is to find an
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explanation for the deviation of L from unity, i.e.. to look for
collectives with f.-values other than .

SEX DISTRIBUTION OF INFANTS

The relative number of male and female births has been a favourire
subject of statistical investigation. In the course of the 24 months of
the years 1908 and 1909, 93,661 infants were born i Vienna:® the
average was therefore 3903 births per month, Of these infants, 4§12
were boys, corresponding lo an average of 2007 male birghS\per
month. The proportion of male births for the whole periadiisy

48,172/93,661 = 0.51432. O
For the 24 single months, this proportion varied Jrdm 0.4990 in
March 1909, to 0.5275 in August of the same y}:q}': The following
table contains the 24 monthly values: ~\

0.5223, 0.5125, 0.5141, 0.5246, Q5N26, 0.5136,
0.5187, 0.5213, 0.5105, 0.5203/8.5124, 0.5141,
0.5143, 0.5093, 0.4990, 0.5097; 0.5140, 0.5089,
0.5129, 0.5275, 0.5178, 08130, 0.5177, 0.5027.

The average of tham%mdhbsdg:}ﬁiﬁh@ﬁ; the dispersion, calculated
according to the rules given ahiove, is 0.000 0533.

Now, according to Lexis’* theory, we ask for the value of the
expected variance; this,£alue is calculated from the distribution i
the collective, the si lé\elements of which are as follows: 24 repetl-
tions of a group QQLS draws from an urn containing tickets, the
proportion of tHese marked 3/ {Male) being about 514 to 1000, The
relevant formufahis slightly different from the one used above because
we are now’cbnsidering, not the number of the events thcmselvés
(i.e., the r@n"lber of male births), but their proportion. The resuit 13
that ’N{é..\factor z appears now in the denominator instead of the
numerator of the fraction, and that the expected value of the
}:ﬁﬁance is

T o,

With n = 24, 7 = 3903,

and p = 0.514, the numerical calculation
leads to the value

23 0.514 x 0.486
5 e — = 0.000 0613,
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The ratio of the empirical dispersion to this last value (which we may
think of as a theoretical or expected value of this dispersion) is

0.000 0333
0.000 0613

'The actual dispersion is smaller than the theoretical one. In other
investigations of the proportion of male births, a value of Lexis’s
ratio closer to 1 is obtained. We must therefore look for an explana-
tion of the slightly subnormal dispersion found in this special case.
Tt is, in fact, possible to give such an explanation by means of a moge(
elaborate analysis based on the theory of probability. So far, we
assumed a collective in which each element was represented by.24
groups of 3903 draws each from one and the same urn. Thes€ draws
correspond to as many births occurring under identical gopditions.
L1 the new collective we still assume that we have 24 i@enﬁica] groups
of 3903 draws each; but for each of these 3903 dransdifferent urns
are now used, 1.¢., urns with varying proportionsof¥’s (— popula-
tion groups with varying sex ratio). It follows«tem a known alge-
braical theorem,? that in this kind of collectiv@’the expected value of
the dispersion is smaller than in that considsted before. As it is very
probable that the sex ratio of live birtls)depends on race or social
conditions or both, it must be ex%qgegbigha;i bservations within a
more or less mixed population will show:

== {.869.

)W smal erlcﬁgﬁé?gf%hnthan those
within a perfectly homogencous.one. This hypothesis seems appro-
priate to explain the subnormal'dispersion of the sex ratio in Vienna,

at this time. K

S

~
STATISTICS OF D]§>IHS WITH SUPERNORMAL DISPERSION

Examples showing a supernormal dispersion are much more
frequent; here the dispersion found from the experimental data is
much lazger\fhan the expected one. We may consider, for instance,
the death $fatistics in Germany in the ten years 1877 to 1886,
duringwhich period nothing out of the ordinary intervened to upset
the geéneral trend of life. The table on the next page shows the

{abstute number of yearly deaths together with the proportion of
déaths per {000 inhabitants:

A reader without knowledge of mathematical statistics may find
the numbers in the last column amazingly uniform. Authors of an
earlier period were full of astonishment at the apparently exceptional
‘stability’ of the conditions of human life, If, however, the dispersion
of the values in the above table is calculated and compared with the
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expectation according to Lexis’s Theory, the result is a very different
one. The arithmetical mean of the ten numbers in the last column is
27.41 per 1000, or 0.02741. The ten deviations from the mean,
squared (e.g., for the first year, 0.028 -— 0.02741 — 0.00059:
0.00059% == 0,000 000 3481), summed, and divided by 10, give the
value 0.000 000 0949 for the dispersion. This number appears at
first sight to be very small indeed.

If we now compute the corresponding expected value of the dis-
persion, we find that the number obtained is much smaller still¢Fhis
is due of course to the very large value of z involved., We,hdve to
put n = 10, p = d = 0.02741, and z equal to the number of gxperi-
ments in each of the ten groups of observations, i.e., tHe number of
inhabitants of Germany, which was at that time abeiit*45 millions.
The caleulation gives the result O

T
5 Q02781 X 0.972%9 _ , 006000 533.
~

The ratio of the observed dispersion o this expected value is
949/5.33 = 177; in other words, tha\aetual dispersion of the yearly
death frequencies is nearly 200 time¥ the expected onc. How is this
to be explained ?

10 45,000,000

www.dbl‘auljph‘:éj‘y,org,in

R "To’tal number Number of deaths

Year ¥ of deaths per 1000 inhabitants
1877 m( 1,223,156 280
1878 (\J 1,228,607 27.8
1879\ 1,214,643 27.2
1880 1,241,126 27.5
P :\1881 1,222,928 26,5
\~ 1882 1,244,006 27.2
\I"\." 1883 1,256,177 27.3
O 1884 1,271,859 27.4
N 1885 1,268,452 27.2
¢ \ » 1886 1,302,103 27.6

o

SOLIDARITY OF CASES

Let us consider more closely the collective with which the yearly
death roll is compared in Lexis’s Theory. Its element is a tenfold
repetition of a group of 45 million draws from an urn containing
274 black balls, and 9726 white balls, per every 10,000, If the
correct analogy were to let every German draw once a year a ball
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deciding his life or death during the following year, the ball being
replaced before the next trial so as to keep the proportions of the
balls constant, then the dispersion of the death numbers would be
177 times smaller than it actually was. It is, however, obvious that
this description of the game of life and death is very inadequate.

We know from everyday experience that there are phenomena that
cause the death of a multitude of people, such as bad weather during
a particular winter or summer month, an unfavourable economic
condition within a district, or an epidemic. Thercfore, we shall
approach the real situation much more closely by assuming that in- {
stead of every singlc one of the 45 million inhabitants drawing his
own lot from the urn independently of all the others, a smallet)
number of ‘representatives’ do so, each for a group of individuals.
According to the formula of p. 149, the expected value of thewariance
increases in the same proportion as the number z of ihdependent
cases within a group decreases. Therefore, if we assymsg,that a com-
mon lot is drawn for every group of 177 inhabitanis’of Germany,
deciding on the life or death jointly [or all of thom, then there is
complete agreement between theory and obe{V"ﬁion.

S\ 3
AN

TESTING HYPOTHESES
wwn dbrauli brary.org.in

Modern statistical methods, whighyplay an important role today
especially in England and Ameniga, group together a number of
problems under the heading of ‘Testing Hypotheses’. In this sense,
Lexis’s Theory tests the hypothesis that a certain sequence of observ-
ations can be consideredeasthe outcome ol a group of alternatives,
i.e., experiments with constant probability p of success. The term
refers, however, primarily, to ‘hypothescs” which can be expressed
numerically. Th@asimiplest instance of testing such an hypothesis is
the problem wliich we discussed earlier and denoted as Bayes's
problem.

Suppqs@% draw ten times from an wrn which contains black and
white balls. If we obtain seven black balls, we will readily adopt the
hypgthesis that this urn contains more black than white balls, i.e.,
thatythe probability of drawing black is greater than that of drawing
white; in other words, that the probability p of drawing a black ball
lies in the interval 0.5 to 1. We might even venture to restrict our
hypothesis further, saying that p lies between 0.6 and 0.8, since the
observed frequency is 0.7. The main question is: How is such an
hypothesis to be justified, and are we able to indicate exact critetia
for its adequacy?

155



PROBABILITY, STATISTICS AND TRUTH

Prior to making any caleulations, we wish to mention two un-
deniable facts. First, under no circumstances can we draw from the
given observations a cerrain conclusion concerning the unknown
probability p. It could be that cven with a very small value of p the
first ten drawings might give seven black balls out of ten, cven though
such an event is quite ‘improbable’. Sccond. it is clear that the
numerical ratio 7/10 as such cannot be the only decisive instance for
justifying the validity of cur hypothetical assumption. If in 1000
experiments we obtain 700 black balls, the ratio is still 0.7, yet\the
hypothesis that the original probability p Ties between 0.0%and 0.8
now has much better ‘backing’. AN\

According to our conception. the problem posed ¢itw/be solved
unequivocally and satisfactorily by means of Bayes', theory. Let
us briefly review the solution of this problem. Catgn tlic numbers 7
and m (in our present example 10 and 7). nam@ly; the total number
of all observations and the number of “succedslul cvents’. we want to
know how great the probability is that theyOsiginal probability p will
lie belween certain limits p; and P & Mas been shown that the
answer depends on the product ofMw@ factors, One factor is the
familiar probability that, with a givew’p, n; black balls will appear in
i experiments. This is given hyithe formula (s : p). The second
factor is the generally ublendmBainioing ot a priori probability of the
particular value of p undergonsideration. Next, we have to form the
product of these two fadtors for all values of p lying between the
limits p; and p,, and te'stim up these products. Finally, according to
the rule of partiti ﬁ:'tiu's sum is to be divided by the sum of such
products for albpossible p-values. This quotient gives us the desired
probability ofinférence. We found that in this problem the influcnce
of the factghfeprosenting the a priori probability tends to decrease
more and miore as the number of observations » increascs. It there-
fore follows that if the initial or a priori probabilities of the possible
valugs.of p are really unknown, we cammos draw any conclisions S0
lgog ‘as # is small. Tf, however, we perform a large number # of

:?Xperlments, we can obtain meaningful results by making an arbi-

/ trary assumption about the a priori probability, c.g.. that it is con-
stant. This finding is in complete accord with common sense: if a1
event ha_s occurred twice in three trials, we cannot conclude anything
from this fact; if it occurs 2000 times in 3000 ohservations, we can
draw fairly precise conclusions concerning the probability of the
underlying value of p.
_This same line of thought finds far-reaching applications in ques-
tions of statistics whose scope goes well beyond the original Bayes’s
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problemn. Consider » observations and a number #, derived from
them in some way; then the probability w of the occurrence of
#; is a function of # and #, and may further depend on some
unknown quantity p. Our problem is to draw an inference regarding
this unknown value of p from the known values of » and 7;. This
problem can be solved only by means of Bayes’s theory. For every
value of p, in the interval in which we presume p lics, we form the
product of w and the generally unknown, a priori probability of p.
The sum of these products (divided by a certain constant) provides
the probability of inference that p lies in the presumed interval{
Again, we find, in most actually occurring applications, that as 7 gets
larger the influence of the a priori probabilitics becomes progressively
smaller. It follows that if we have no information concerniag the
object of our ohservations, and the number of experiments¥ is not
farge, we cannot draw any conclusions; however, if n isxsuiliciently
large, we shall obtain a good approximation with\eomputations
based on the assumption of a priori probabilities'eyenly distributed
over all the possible values of the variable p. o N\J

O
R. A. FISHER’S ‘LIKEBIHOOD’

In 1921, the British statistician RyKabishertl-aticoated o found
a new theory of inference; in this e@pnexion, he introduced the term
‘likelihood’. in common usage,\ikelihood” and ‘probability’ have
the same meaning; Fisher, however, introduces the term in order to
denote something differept {fom probability. As he fails to give a
definition for either wgr@,"e., he does not indicate how the value of
either is to be determiikd in a given case, we can only try to derive
the intended meaning by considering the context in which he uses
these words.

Fisher star(8)With the premise thal the initial probability v(p) is
unknown%t Jeast in all practical instances, and that it may not even
exist. Tydany case, he argues strongly that it should in no way enter
into oWt considerations and our calculations. Given this point of
’\aiq%\»/e are left with only one factor—instead of two—for determin-
ng'the probability of inference. If we denote again by w the proba-
bility of observing the number n, in n experiments, then, according
to Fisher, this guantity w, which of course depends on the unknown
p. Is called the likelihood of p. Let us consider an example. 1t is easily
seen (and can be deduced from the formula given on p. 149} that the
probability of obtaining two successes in three experiments with the
probability p for the single experiment is equal to 3p*(1 — p). It
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follows that, if » = 3, n, = 2, the ‘likelihood’ for p = /2 is cqual to
3 X 1/4 x 1/2 = 3/8 and the ‘likelihood’ for the value p = 2/3 is equal
to 3 % 4/9 X 1/3 == 4/9, i.e., somewhat larger.

As soon as he has introduced his new term. Fisher starts using it
as completely synonymous with ‘probability” in the everyday sense
of the word, That is, he considers a value of p as more reliable if it
has a greater likelihood, and he recommends in particular, as the
“best estimate’ of p, the value which has the greatest likelihood. In
our example of two successes in three trials, we can ecasily sce that
the greatest value of 3p¥(1 - p) is 4/9 and that thercfore the cotde-
sponding value of p = 2/3 would represent the best estimaté of p.
(It is generally true that in the cases where the likelihood i s(expressed
by the formula on p. 149 the value p — n,/» has the grdatcst likeli-
hood.) N

From our point of view, there is no doubt thdi Wkclihood is a
correct measure of the probability of inferencédw'two cases. First,
where we have reason to assume that the unknoWh initial probabilities
are uniformly distributed over all the pos§ible values of p, or, in
other words, that the initial probabilityzisha constant. Tn that case,
the quantity w is multiplied by the cogsgdnt and the inferred proba-
bility of p is proportional to its dikelthood. Second, il we know
nothing about the/a pribsRpHbBaEIIRRE But, f the number of cxperi-
menis # is very large, then we &fow that the influence of the initial
probabilities is not very constderable and we may therefore consider
them as uniform, in the gonte of an approximation. Herc again the
probability of inferendg s, at least approximately, proportional to
the likelihood. What\meaning the likelihood could have in any case
other than the twdyjust described is inconceivable to me. T do not
understand thf.\fnény beautiful words used by Fisher and his fol-
lowers in support of the likelihood theory. The main argument,
namely, thatp is not a variable but an ‘unknown constant’, docs not
mean a@thing to me. It is interesting to note that some philosophers
hgy@i@lready begun to expound ‘likelihood’ as a new kind of proba-

mﬁgtl{ty which would not depend on relative frequencies.!?

SMALL-SAMPLE THEORY

One might think that there is no great harm in introducing the
word ‘likelihood’ for one of the factors of the product on which the
Probabih'ty of inference depends. In fact, unless one of the two cases
just giescribed should prevail (large number of experiments ot ap-
Proximately uniform initial distribution), we wounld expect tbat Do
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one would even think of applying the theory. Unfortunately, this is
not the case. Fisher emphatically avoids all reference to Bayes's
solution of the problem of inference; this is for him a matter of
principle. Therefore he cannot admit that, unless we have somc
information concerning the initial distribution, his notion of likch-
hood is applicable only in cases of a large number of experiments.
Certain statisticians have found in this a welcome occaslon to reach
at last what seemed to them one of the goals of statistical theory,
namely, to draw meaningful conclusions from a small number of
observations. If in three experiments we have had two positive re:
sults, it is wonderfully satisfying to be able to make the statement
that the likelihood of the unknown p having a value of 2{3 is 0.444}
(Everyone secretly thinks that now he has a chance of 44.405% of
being right in selecting the assumption p == 2/3.) This very-idea.
applied to more complicated problems, is at the basis ofia system
which is appropriately called Small-Sample Theory, namely, the
theory of small groups of cxperiments. Let us Wlusirate it by a
characteristic example.*® O

It is desired to test a new drug to see whetlieb it induces longer
sleep. The drug is given to ten patients and the result is that in the
most favourable casc sleep is prolonged b%)3.7 hours; in the least
favourable case, it is shortened by, L6, hipsu Fearaverage extension
of sleep in all ten obscrvations amounts™to 0.75 hour, Now, without
reference to any a priori knowledge“such as we might derive from
the composition. of the drug, the small-sample theory draws the con-
clusion that in the above cage,there is a likelihood of 0.888, j.c
almost 90 %, that, on the atetdge, sleep will be prolonged by the 1.15;
of the drug under copstiiération. T do not think that any sensible
doctor will have muck gonfidence in this figure of 902/,

According to out/way of thinking, if we have ten observation
whose results quili‘ate between plus 3.7 and minus 1.6, we cannoi
draw any comoclisions unless we include some a priori informatio
namely, sqﬁs “knowledge concerning the drug, gained independent?’f
of and jm\addition to our ten experiments. 1f it is impossible of ¢ ¥
diiﬁgul&’m find a numerical expression for such a priori knowleciéi)0
wé HaVe no other recourse but to extend our sequence of obs tge,
tion$ to many hundreds or thousands of cases, erva-

As a matter of [act, it almost seems that the hevda ,
sample theory, after a rather short duration, is alrgadyysafgzh%gmau'
little reference to it nowadays. We can only hope that stfi‘tist.e‘ff3 is
will return to the use of the simple, lucid reasoning of Bac t iClang
ceptions, and accord to the likelihood theory its proper rcﬁcs S con-
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SOCIAL AND BIOLOGICAT STATISTICS

The field of application of statistical methods becomes wider as
time goes on. The first ficld in which statistics found extensive use
was that of social phenomena. Some people still believe economics
and the social sciences to be the only fegitimate domain for the
application of statistical methods. The original meaning of the word
‘statistics’ is indeed probably ‘the science of the state’. This part of
statistics has long since found its undisputed place among the sogial
sciences. If some exponents of social sialistics maintain that 16%as
nothing to do with the theory of probability. this is not o é\taken
too seriously. Tt is the sume as if somebody were to saytbi¥ it is
possible to be a statesman without knowing the histpry’of one’s
country, or to build bridges with no knowledge &f “§tatics. The
classical achievements of social statistics wereg @@rtainly due to
a different outlook. \

One of the founders of social statistics. Adolphe Quetelet,* has
prefaced his fundamental work, Social Ph:gts}z'.s: by a detailed intro-
duction dealing with the theory of probiability. contributed by the
astronomer Herschel. This book, whigh'eontains the famous concept
of the ‘average man’, has influenged™two generations of scicntists.
The subjects treaged by Quatslegdraiafien of a biological nature, and
even include problems of medjsiite. The statistical treatment of bio-
logical phenomena, which fsi$bmetimes called biometry, nowadays
plays a steadily growing{part in the general science of life. English
scientists have been especially active in its development. Far-reaching
hopes of a possible itiprovement of the human race ure often at-
tached to the stidy “of this subject; the term ‘sugenics’ has bt_een
specially designed’ to characterize this purpose of vital staiistics.
These high dims have not always been favourable to the soundncss
of the sci,qxi\ﬁﬁc basis of these investigations. A fur sounder way has
been followed in the development of x closely related subject, that of
the %?iénce of heredity. The first statistical trcatment of this subject
wagdue to the Augustine monk Gregor Mendel (about 1870).%

N\
N/ MENDEL’S THEORY OF HEREDITY

Merlldel recognized that the distribution of certain heredi tary attrl-
b.utgs In & number of organisms belonging to the same generation is
_smrnlz}r to the distribution of attributes in a colleetive. Similarly, the
Inheritance of properties from gencration to generalion can be
considered as a collective. With respect to a so-called ‘Mendelian
character, each individual possesses two ‘genes’, determining the
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possible alternatives. The colour of the flowers of peas is such a
Mendelian character, the aliernatives being red or white. The colour
of the seeds of peas is also a Mendelian character, with the alterna-
tives green or yellow. From the point of view of hereditary properties
with respect to the colour of flowers, each pea plant belongs to one
of the three types: white-white, red-white, or red-red, as determined
by the corresponding genes. In the process of the formation of a new
individual, a parent plant gives to cach plant of the next generation
one of its own genes, the other one coming from the second parent
plant, The probability of the transfer is the same for both genes and
is thus equal to 1/2. A

Assuming that both parent plants belong to the type red-yhite;
the probabilities of a plant in the next generation belonging to the
groups red-red or white-white are 1/4 each. The probability of the
type red-white is 1/2, since no distinction s made between the two
combinations red-white and while-red. In this pestienlar case the
‘mixed’ type is externally indistinguishable from, one of the ‘pure’
types, which is called ‘dominant’. Consequently\tite distribution of
appatent attributes in the second generationski{ [Df(3/4) = 1/3.

The actual observations of Mendel applied to the colour of seeds
gave 2001 green peas and 6022 yellow peas in a heap of 8023 peas.
Bateson found among 15,806 peas @aﬂ@m@%@,&lﬁy%‘%ﬁq}low ones.
The ratios are 1/3.01 in the first casgtand 1/3.05 in the second. Both
these findings are in excellent agteement with the theory.

Far-reaching conclusions gau be drawn from the simple assump-
tions of Mendel’s theory. Although the underlying hypotheses can-
not in general be testcd%ﬁedtly, all important conclusions derived by
the application of the theory of probability to the data of heredity
have been confirmed-fhost brilliantly by the numerous experiments
of plant growers' Jrd animal breeders. This practical suceess is one
of the most ifgpiessive illustrations of the usefulness of the caleulus
of probabilities founded on the concept of the collective.

The statstics of hereditary phenomena is nowadays a science
widelydeveloped and most successful in its application. It offers a
puaiber of interesting pro blems to the theory of probability and some
f these are rather difficult. None of them is, however, of primary
importance for the foundations of the theory.

INDUSTRIAL AND TECHNOLOGICAL STATISTICS

Industry offers some possibilities of application of the theory of
probability which do not involve any fundamental difficulties either,1®
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Some of them belong to the ficld of the theory of errors. which wiil
be discussed in some detail below. An example of this kind is pro-
vided in testing the uniformity of steel balls manufactured for ball
bearings, where an accuracy in size to 0.00 mm is required. Also
certain problems of a new characier have arisen which are of great
theorctical and practical interest, We may call thew problems of
Traflic Density.

The machinery of an electric power station must be chosen in
accordance with statistical data concerning the frequency and in-
tensity of the current consumption by its customers. The pqpu}ation
of persons using the current can be considered as a collectives Attri-
butes of a single element in this collective might be the priod of the
day when current is required and the duration and gndchsity of the
consumption. A

The problems arising from the construction of-abtomalic telephone
exchanges, and even switchboard problems Belénging to the same
group, arc more interesting from a mathefuadtical point of view. It
would be impossible, or at Jeast very w: s;:e{ful, to build a telephone
exchange so that all possible communiegtions between any two su_b-
scribers could be established at the Satne time. The rational way 1s,
starling from statistical observations and using certain probability
assumptions verifivd i EBHPIRRY S & Ralculate the probabilities of
ditferent numbers of calls.@riginating simultaneously, and to plan
for combinations whosefprobability is not below a cerlain level. It
1s of course possible fol\highly improbable accumulations of calls to
happen on some d-‘g}Q‘The engineers prefer the risk of a failure of the
exchange in theycate of such a highly improbable rush to an un-
economic increase’in its size. This is an especially instructive example

. ama . 17
of the clese’rdlation between probability and relative frequency. ‘
A
§~ AN EXAMPLE OF FAULTY STATISTICS

2 8

The picture which [ have drawn of the possibilities and results of

{ Statistical methods would be incomplete were I not also to say @ few
» words on the erroncous and sometimes scnseless theoriss which have

been propounded in the name of statistics. Unfortunately, the num-
ber of such mistakes has been quite large, cspecially in medical
literature. They are valuable as examples of the danger involved in
each deviation from the firm principles of the theory of probability-
In nearly all cases of this kind it is possible to recognize the souree
of error simply by inquiring a little more closely into the nature of
the collectives to which the calculated distributions are supposed 10
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correspond. T will discuss one example in some defail, because it has
begn published with the authority not only of a celebrated psychia-
frist, but alse of a well-known mathematician.18

{n reciting certain Latin verses, a patient could not remember the
word ‘aliquis’. He was asked to give his nearest mental associations
to this word, He first mentioned the word-division ‘a-liquis’; then
‘reliquiae’, a ‘liquid’, and seven other expressions belonging, more
or less clearly, to the complex *blood-liquid’; finally a tenth associa-
tion of a neutral character. These are the statistical data. They show
that 9 out of 10 ideas associated by the patient with the word which
he could not remember belonged to a certain complex of ideas, A%,
caleulation was now carried out, from which it was concluded jfiat
the probability of the lapsc of memory being due to the displacement
of the word ‘aliquis’ by the critical complex of ideas is adpimber
differing from 1 by a fraction with 25 zeros after g decimal
point! In other words, the authors conclude that _thé well-known
explanation of this lapse of memory, which according\o the psycho-
analytical theory of Freud is due to a displacemept, has this over-
whelming probability of being true. More than ‘that: it is actually
hinted that the same immense probability, Axtetnting to certainty in
practice, can be ascribed to Freud’s theqry as a whole. We will over-

look the obvious error of judgmentv\,ig:;ghj’gllgﬁqi%%%&.gnce it is
clear that even the most exact and eeefain verification o the predic-
tions of a theory in one single casexcannot be considered as a proof
of its truth in general. We arpdinterested here in the gross mistakes
involved in the calculation/of the probability relating to this one
particular case. N

The above-mentiondd number with 25 zeros is obtained by the
author in the follawditgway. He estimates that about 1 in 1000 of all
the ‘ideas of an éducated man’ bears some relation to the ‘critical’
complex. He the | proceeds to the solution of a problem of the
Bernoulli tybew'the determination of the probability of drawing nine
black ball\ini ten draws from an urn containing only one black ball
per tho\zxsénd balls. The answer is in fact a number of the order of
0.12%N.8., a decimal fraction with 25 zeros behind the point. The
mathématical solution is correct, but what has this mathematical

problem in common with the actual case under consideration?

CORRECTION

According to this solution, the outcome of the statistical experi-
ment shows that the patient is forming a much larger number of
163
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associations belonging to the critical complex than an average
educated man can be expected to make. However, in thal case, the
author’s first task should obviously have been to determine experi-
mentally how often ideas belonging to the critical complex oceur
among the associations normally provoked by the word ‘liquis™. 1t is
very improbable that an educated man, starting his associations with
the syllables ‘liquis’, will not soon arrive at the words ‘reliquiae’ and
‘liquid’. Once these words have been formed, it is also natural for
him to remain for some time in this realm of ideas. The psychiattist
himself has obviously the same turn of mind, since he says that.the
separation of the word ‘aliquis’ into “a” and ‘liquis’ already $oidts in
the direction of the critical complex. In any case, the initidheollective
has obviously been wrongly defined. The corrcet basig™would be the
number of ideas belonging to the critical complexAssociated by a
‘normal’ subject with the word ‘liquis’ and negtythe frequency of
these ‘critical’ ideas among all the possible id¢a¥ of a normal indi-
vidual. N

The deduction of the final collective ftom the initial one is also
wrong. In the language of our schem@ofuirns, we observed the rela-
tive frequency @ = m/n = 0.9 of blaek balls in 10 draws. Let us
assume the probabili‘}')y fdri.g vinga black ball to be 1/2. The problem
should then be f&‘f'}’ﬁulg éauaéh’éﬂgﬁg‘.gﬂfhder given conditions, what
is the probability that the umtifrom which the draw ‘9 black balls out
of 10° has been obtain€d contains a proportion of black balls
greater than 5097 Oryin the language of psychology, what i the
probability that tl\e'\patiem who has produced nine out of len
‘eritical” associations has more than a normal inclination to produce
associations of #his kind ? This problem is of the Bayes type and not
of the Bernoulli kind, i.e., it belongs to problems leading to the
Second rather than the First Law of Large Numbers. The probability
asked foe/in this problem is about 0.95.

The ‘derivation of this result involves the assumption of equal a
_prioti probabilities for all the urns with diflerent proportions of bl ack
o~\balls. According to a proposition mentioned in the discussion of the
‘Second Law of Large Numbers, the result would be independent of

thesc_a priori probabilities only if the number of experiments # was
sufficiently large, whercas here » = 10 only.

Stll a further uncertainty is introduced by our assumption of the
value 1/2 for the probability of a ‘critical’ association with ‘liquis’
being formed by a ‘normal’ individual., All that we can say is that
the result we obtained, i.c., the estimate 0.95 for the probability of
Freud’s explanation of this particular case, is a reasonable oue, a8
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compared with the abstruse assertion of a probability of 10~% for
explanations different from that suggested by Freud’s theory.

We have thus learned that in order to treat this case correctly by
means of the theory of probability it is necessary: (1) to take a
different initial collective; (2) to make a plausible estimate of the
probability for which we took the value 0.5, (3) to use Bayes's
formula instead of Bernoulli’s formula, and {4) to make a much
Jarger number of tests 80 as to become independent of the unknown
a priori distribution.

Actually, the whole method of investigation is probably not the
most suitable one. It would be more realistic to assume that the word
‘aliquis’ provokes associations belonging to the critical complex it
il individuals, and to investigate the relative frequency of thecases
in which this word is forgotten by individuals under differgnt psycho-
logical conditions. If such a statistical investigation {s§mpossible, it
would be better to abandon the statistical approachdifegether rather
than to force a conclusion for which there exists\np statistical basis.

N

7
S

SOME RESULTS SUMMNRIZED

I do not intend to add to the number of examples showing the
application of the theory of probakitiydiv-stiibstical prphlems. The
fundamental problems have beg@i®made sufficiently clear by the
examples we have discussed so far, and a systematic investigation of
the various problems does @tt belong to the scope of these lectures.
Some of the problems inditdted above will be considered further in
the pext lecture, espe@ially the phenomena of ‘probability after-
effects’. Before passihg to a new subject, I will give the usual sum-
mary of the most ffportant concepts which we have so far discussed
in this lecturea N\

(1) Sequenges of numbers obtained by statistical investigations

can somelitnes be immediately considered as collectives; in some
other gases they can be reduced to a combination of a number of
colleetives.
@)Y Arguments against the theory of probubility based on the
ndfion of the collective cannot be founded on existing statistical data.
Neither Marbe’s theory of ‘statistical stabilization’, nor the (opposite)
theory of ‘accumulation’, suggested by Sterzinger, nor the supposed
Law of Series provides valid arguments of this kind.

(3) The reduction of a series of statistical data to a cotrespond-
ing collective can often be carried out by means of Lexis’s “Theory
of Dispersion” and by more recent developments of this theory. This
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is possible for the rather coramon type of problem where the
statistical data are obtained from a series of simple aliernatives.

(4) The Anglo-American statistical theory based on Fisher's
notion of ‘likelihood’, which rejects Bayes’s solution of the problem
of inference, provides meaningful results in two instances: (a} if the
assumption that the initial distribution is approximately uniform
seems acceptable; () if the sequence of observations is long enough
so that the influcnee of the initial probabilities has decreased. The
so-called small-sample theory is to be completely rejected. O

(3) If the concept of probability and the formulie of the theory of
probability are used without a clear understanding of the gQlicotives
involved, one may arrive at entirely misleading results,,

7%
3

#

DESCRIPTIVE STATISTICS & & f

T have mentioned at the beginning of this l¢eduYe that a number of
different definifions of the scope of statistios’have been suggested.
Many will call the subject discussed in.\'(his lecture “Mathematical
Statistics’. T would like to mentionyhowever, that mathematical
methods are also used in statistics in away which shows no relation to
the problemswhig{;w\% }&%‘{%F}Pf%ua‘q’#%dd fhematical treatmcnti_soften
applied to statistical data, wigh§ut any probability considerations.

This kind of mathematicistatistics can be conveniently called
*descriptive’, The word ‘descriptive’ is used here in its narrow sense,
implying nothing bup-the formulation of results in mathematical
terms, without attepipting to include them in a more general logical
system, based omthe concept of probability.

The purposesofidescriptive statistics is thus to characterize statis-
tical results askxacl.ly as possible, by calculating the values of certain
characteri§tic Tunctions. The simplest of these functions are the mean
or average and the dispersion, which have already been di seussed in
the greceding sections,

Xhese two quantities, average and dispersion, are in gencral not

Suflicient for a description of a series of statistical data and particu-

“:Iarly‘ for a comparison of various such series. Descriptive statistics
has invented other methods of comparison, which usually consist in
the calculation of certain additional statistical functions. A great
number of statistical measures'® of this kind have been suggested 1n
the course of time; exarmples are the median or central value, various
mean deviations, quartiles, deciles, etc. All these calculations to-
gether are not essentially more effective than the simple determina-

tion of the average and of the dispersion. A statistical function very
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useful in certain special cases is Gini’s ‘measure of disparity”.* Karl
Pearson,? the founder of a great school of statistics in England, has
tried another way of incrcasing the capacity of descriptive statistics,
by defining certain typical distributions, in the hope of being able to
reduce most of the distributions occurring in practice to one or
another of these types. Mathematically the most perfect and most
general of the descriptive methods suggested so far is that introduced
by H. Bruns®® in the development of his so-called *Theory of Finite
Populations’.

Starting from an idca suggested by the astronomer Bessel, Bruns
showed how all statistical sequences can be described, with  drty
desired degree of accuracy, by an infinite sequence of ‘measuring
numbers’. The first number in this systematically developed sequence
is the mean; the second is the dispersion; the third mgasibres the
‘skewness’, the fourth the ‘excess’, and so on. The Swedish astrono-
mer Charlicr has made valuable contributions Lo thi§ ‘method and
shown how it can be adapted to other cases. \

We have no intcution of entering info a mpre}detailed discussion
of this subject, since the branch of mathematica! statistics to which it
belongs is the ore least related to the theoryof probability. All that
is useful from our point of view is to kngw;in the interest of a general
orientation on the subjeet, that allwtieedifferettbmethodg. o descrip-
tive statistics, including the Theorgof Measuring Numbers, Pearson
curves, and the expansion of Brugls and Charlier, arc only methods
for a preliminary treatment.§fthe experimental data, by which we
prepare them for the thegre}ical investigation.

&
FOUNDAKIONS OF THE THEORY OF ERRORS

I want to addznew words on that branch of statistics based on the
theory of probability which has found the most general acceptance
and is the\least controversial. It is equally important in the ficlds of
statistics{and of physics and thercfore forms an appropriate link
betweeli*this lecture and the one which follows. I speak of the so-
calléd* Theory of Errors’.

Most observations which depend on measurements, or, more
generally, on any determination made on concrete objects, are Hable
to so-called ‘errors of observation’, namcly, variations in the results
obtained by the repeated measurement of the same quantity. Using
the most exact methods available, with all possible precautions, we
still obtain variations, for cxample, in repeated measurements of the
distance between two fixed points on the surface of the earth, We
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assume that this distance hus a definite true, unchanging value, or at
least a value which does not change over the period required for
carrying out the measurements, and it follows that the different re-
sults obtained, with the possible exception of a single one, are all
incorrect, that they all include errors of varying magnitude. There is
no lack of possible sources of errors. When using the measuring rod
we may even have made an allowance for the change in its length due
{0 temperature variation, as we should. But still there is always
possible an inaccuracy due to, say, direct sun rays, some not Vei&
well-studied change in the material of the rod, a slight bending, etc.
Another source of error is the inexuactress of the readings Lmd’er the
miicroscope, for two observers practically never make idgntical read-
ings; there may be distortion through air currents, vibfatipns, elastic
after-effects, imperfections of the optical apparatug,”gfe.

The problem of the existence or nonexistenod¥ot 4 ‘true’ value of
every quantity belongs to the realm of epistomaldgy and we need not
be concerned with it here. The essential facesdr us is thal the results
obtained in a sufficiently long serics of dicksurements have all the
properties of a collective. It is in gengraihol possible to prove this
directly by investigating the effect\olt’ the relative frequencies of
different results if the number of\Observations is increased, or if
place selections of’ﬁ}ﬂ‘é@fft@hﬁf{&f’é'ﬁﬁﬂied, In most of the appli-
cations of mathematical thegies, the clements susceplible of an
experimental test are congeguences of the theory rather than of its
premises. The same is grue for the theory of errors.

The great mathehf: tician, Karl Fricdrich Gauss,>* was one of
the first to recopnize the possibility of applying the theory of
probability to the- investigation of the errors of observation. He
developed a metod which is known under the name of the “Method
of Least Sfliares and is widely used, particularly in geodesy and
astronomdy,’ but also in all other sciences having an observational
basi‘s\fThe method of least squares is based on a mathematical
thedtem which was first derived by Laplace;? its importance was

<ol fully recognized until much later. This theorem is esscntially a

sathematical one, and I cannot explain it here in all its details, which
are of interest only to the specialist, Faplace’s proposition, however,
is of a much too fundamental character to be co mpletely passed over
In these lectures. I shall attempt to explain its general meaning
wtthout entering into mathematica] details. -

We have already mentioned that errors of observalion, or, moré
exactly, the mutual deviations of observations, arc due to a great
number of causes. The reader will find it plausible if 1 state that this
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very multiplicity of causes is the real basis for the existence of a
general theory of errors. The individual sources of error may have
differing regularities; all together, they produce a more or less
uniform result. The general theorem which we are going to discuss is
in fact founded on the idea that the resulting observed error is the
sum of many small elementary errors.

GALTON'S BOARD

A very instructive model demonstrating the cumulative effect of a {
great number of independent causes of etror is Galton’s Board,
which T am going to explain to you. It is a plain, slightly slanting
board studded with 40 horizontal rows of pins. The distandgs be-
tween the pins in cach row are all equal to 8 mm, and the-distances
between the rows are the same. An important feature s that each
row is displaced horizontally with respect to the twolucighbouring
ones by 4 mm. The pins in the tenth row are \this way placed
exactly underneath the middles of the spaces betwgen the pins in the
ninth row, and above the middles of the spa s}n the eleventh row,
The arrangement that the first fow rows @€ shorter than the others
is a practical detail and of no essential ifapdrtance.

I now release a steel ball of 8§ mnw ghglemsian|jshaperg the middle
pin of the top row. Tt can be deflected 10 the right or to the left. It then
impinges upon one of the two middle pins of the second row, and
again has to choose betweenthe'two possibilities of turning to the
right or to the Jeft. These and the following ‘decisions’ are made more
quickly than I can desir;: ¢ them. When the ball has traversed all 40
rows, it has been deflected 40 times to the right or to the left out of
its straight course, \)

We see that, i tht present case, the ball has come to rest 4 places
to the right of the middle of the board. This means that the number
of deflectiof®t6 the right has been greater by 8 than the number of
deflectiopso the left, for a single deflection corresponds to 1 J2 of the
distansgiPetween two pins in a row, 40 deflections occurred altogether
in theypath of the ball, so 24 must have been to the right and 16 to
theeft.

The model represents 40 repetitions of an alternative with the
attribute ‘right’ or ‘left’, or, in a more mathematical form, + 1/2 or
— 1/2. The whole process can be considered to be an element ina
collective, its attribute being the resulting final deviation from the
vertical course, that is, the sum of all the single deviations. Tn our
case, this sum is 24 X (+ /) 4 16 X (-~ 1/2) =12 —8 =4
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NORMAL CURVE

Le¢t us now assume that we have carried out a physical observation
or measurement in which 40 independent causes of error were in-
volved, each causing a positive or negative ercor which by an appro-
priate choice of unit can be made equal to _ 1/2. The resulting
error of the measurement as a whole (s an exactl cquivalent of the
tesulting deviation of the ball from the straight course on Galton’s
Board. The distance by which the ball has been deficeted frong the
middle corresponds to the total crror of the measurement, in* the
units chosen. Deviations to the right correspond to thel vesulting
value being too large, those to the left correspond to thistyaluc being
too small. What happens now if I make a large number, bf measure-
ments instead of a single one? To see this, [ have @nly to repeat the
experiment on Galton’s Board with a correspapdingly large number
of balls. Here are 400 balls, exactly equal in $izeind miass. One after
another they find their way through the rowof pins. In a few minutes
they have all arrived at the bottom of thdboard, and form vertical
columns of differcnt height in the diffefent compartments provided
for them, Each ball rests in the compartment whose distance from
the middle corrcipond&btp suit of all the deviations made by it
in the course of 11s'paSsage, Wesec 4t once the whole result of the
400-fold repetition of the cxpé;{i'nent, cach consisting of 40 processes.
The greatest number ofbalfs lies in the compariments nearest the
middle, corresponding’td a deviation of not more than one or two
units. The compa 'tIQ‘en’ts situated symmetrically on both sides of the
middle contain &blﬁlt the same number of bails. The whole distribu-
tion has a chagacteristic bell-shaped form. Tt illustrates immediately
the distribulighin the collective whose element is a 40-fold repetition
of the oriffiidl experiment,

Laplace“was the first to calculate correctly the distribution of
results obtained by the repetition of a great number of identical
alternatives. This led him to the mathematical expression of the bell-

:?haped curve, which is nowadays usually known as the Normal or

Gaussian curve. Fundamental] , the problem is identical with that
solved by Bernoulli, which we have discussed in the special form in
which the attribute was the number of *heads’ in the repeated tossing
of a coin. This problem, however, and its answer apply only to any
number r of repetitions, whereas Bernoulli’s Law of Lafrgc Numbers
as well as Laplace’s result apply correctly only to inlinilely Jarge /-
Bernoulli’s Law of Large Numbers, in the form which Poisson has
given to it, amounts to the statement of one significant property of
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the resulting distribution; Laplace has succeeded in finding a com-
plete mathematical formula for this distribution. It is represented by
the function e~ *. In other words, the ordinates of the normal curve
decrease on both sides of the maximum in such a way that their
(negative) logarithms are proportional to the squares of the distances
from the middle.

Actually, there exist infinitely many normal curves characterized
by different degrees of breadth, corresponding to different ratios of
height and width. In the case of Galton’s Board the degree of ,
slenderness, or, as we usually say, the degree of precision, depends
first of all on the number of rows of pins. It can be calculated byhe
application of the rules of addition and multiplication of probabile
ties, that is, by the fundamental operations of mixing and combina-
tion of collectives. G

&
L M
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LAPLACE’S LAW

The gencral proposition underlying Gaussjs’ﬁebry of errors may
now be formulated as follows: The normalehgve, which is so clearly
illustrated by the distribution of balls on Gallon’s Board, represents
the distribution in all cases where a final ¢ollective is formed by com-
bination of a very large number o»f}iaii@lirta@illﬁﬁh\fgs,otlgeiﬁttribute in
the final collcctive being the sumdef the results in the initial collec-
tives. The original collectives are hot necessarily simple alternatives
as they were in Bernoulli’s psoblem. It is not cven necessary for them
to have thc same attribiités or the same distributions. The only
conditions arc that a %@y great number of collectives are combined
and that the attribuids are mixed in such a way that the final attribute
is the sum of all {hc"original ones. Under these conditions the final
distribution is @lways represented by a normal curve.

We can ,e.gshy understand how this proposition applies to the
theory oiiéfr‘ors‘ We assume only that in each observation a very
large pumber of sources of error are concerned: it follows from this
asspiption, according to Laplace’s Law, that the probability of a
Contain value x of the resulting error will be represented by the
ordinate of an appropriate normal curve. This is the meaning of the
basic concept of a ‘Law of Brrors’, as represented by a normal curve,
valid for all accidental errors of observation. This provides the basis
for Gauss’s theory of errors and his method of least squares. All
formulas and methods of caleulation which go under the name of the
‘method of least squares’ are consequences of this special form of the
law of crrors. In other words, they are al based on the assumption
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that the errors of observation are caused by a great number of
different causes. There are, of course, many other questions which T
cannot discuss here. Some of them are even of basic interest, such as
how to estimate the above-mentioned degrec of precision of a given
series of observations,

THE APPLICATION OF THE THEQORY OF ERRORS

Gauss applied his theory mainly to geodetic and astronomical >
measurements. In these fields, the methods of calculation basgd, oh
Gauss’s theory, most of which were already known to Legendieydre
an indispensable tool for all practical work. The theory, fs selul,
however, in many other cases which have nothing to dodwith any
‘errors’ of observation, but rather with fluctuations of @ifierent kinds,
such as variations among experimental results, ,\/\“

Take for example the case of measurementsh\Ot'the stature of 2
large number of individuals. Tf each result s expressed in upits of
1/2 em, practically no error of the individual bbservation will oceur.
Tt is, however, possible to consider the vafiations among the different
results, ie., in the heights of the persons measurcd as fluctuations
caused by a number of different diises. The distribution of the
different deviations frors - She#hR Y1 RERMAll the measurements is
found to correspond to a norm@hcurve in this case as well. This is in
accordance with our generalt postulate that a normal curve is always
proeduced when the attribhie of the final collective is the sum of a
great number of indepéndently variable ‘accidental” attributes,

Actually, the results\discussed at the end of the preceding lecture
allow us to generalize the present proposition to include not only the
sum or the averdge, but a great number of statistical functions. Tn
this way, Gawss's Law applies to many biological and physical
investigations where no errors of observation in the original sense of
the expfession are involved.

Omthe other hand, the field of application of the theory of errors
shogld not be extended tco far, as has somctimes been attempfl?d
Not all the fluctuations occurring in the world follow the law of the
normal curve, Tt would be quite wrong to assume that if this law does
not hold the deviations from the mean val ue are not of an accidental
c?:laraf;ter. Karl Pearson® and his school of biometricians were
rlght in stressing that Gauss’s Law is not ‘the last word of wisdom’
In statistics, and whilst in the work of the Pearsomian School we
sometimes miss a somewhat deeper reasoning based on the theory
of probability this should not blind us to the great progress in
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biological statistics brought about by these investigations, with their
freer conception of the nature of statistical distributions.

With these indications I should like to close my consideration of
the application of the theory of probability to statistics. I shall return
to cerfain questions related to the fundamental problems of the
theory of errors in the last lecture when I deal with the interesting
field of statistical physics and the problem of causality which is
closely related 1o it.
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SIXTH LECTURE

Statistical Problems in Physics

O
7"\
ONE further aspect of the application of probability calchlus remains
to be discussed, that is the role played by the probabﬂit}}'concep‘[ in
the domain of theoretical physics. This developnicht was initiated
some fifty years ago when Boltzmann conceivetht remarkable idea
of giving a statistical interpretation to one .6fMhe most important
propositions of theoretical physics, the Seednd Law of Thermo-
dynamics. The significance of this idea, mwhich bears on fundamental
problems and concepts of modern scibnee, is still increasing in our
time. The basic points can be made clear even to an audience
possessing no specia¥ kroWEAGBRBY PSS For a first consideration
of the problem it will in fact{be better to forget about the actual

content of the proposition and concentrate on its logical structure
instead. A
'e)

'\..
THE SEC\OND LAW OF THERMODYNAMICS

Classical thértnodynamics, founded by Robert Meyer, J. Joule,
and especially’ . Carnot, has established that two functions play an
Importapt, part in thermodynamic processes: energy and entropy.
The Lawof the Conservation of Energy, the so-called First Law of
Thexrodynamics, holds for the first of these functions; the so-called
Sesand Law of Thermodynamics, which states that the entropy in-

~Neteases in every cbservable process, relates to the sccond. In con-
§equence of Boltzmann's! famous investigations, started in 1866, this
Second Law Is now formulated as follows: Tt is extremely probable
that the entropy increases in every observable process; a decrease in
entropy is extremely improbable, Substituting in this proposition the
dcﬁmt}on of probabi[ity used throughout this book, we arrive at the
following statement: Tf the ‘same’ physical process is repeated a very
large number of times we may expect that, in the great majority of
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cases, there will be an increase in entropy and only extremely rarely
there will be a decrease in this function. This formulation is not
complete; above all, we must specify what is meant by the repetition
of the ‘same’ process; also, the relation between the value of the
probability and the expected amount of increase or decrease in
entropy must be explained, etc.

Tn any case, however, there can be no doubt that the Second Law
of Thermodynamics deals with relative frequencies of abserved re-
sults. We do not think that objections will be raised in this context ,
to the interpretation of probability as relative frequency m an in?
definitely long sequence of observations. The physicist Smoluchews
ski,2 who made many valuable contributions to statistical physics;
wrote in one of his papers: “Mathematical probability is tﬁg’:,ré‘laﬁve
frequency of the occurrence of certain important evgnts?. This
definition, although somewhat vague and containing af tnnecessary
restriction, is essentially our frequency definition of probability, as
opposed to the classical definition based on lglm.lly likely cases.
Physicists generally agree that probability shebid be interpreted as
relative frequency, even though they do.adt Tsually enter into a
discussion of this point. OO

W,\x{'\f.;:dbraulibrary,org,in
DETERMINISM AND WPROBABILITY

What was the new element if“Boltzmann’s statement that made it
appear revolutionary ? To aniswer this question let us consider what
was for centuries our concapt of the so-called ‘laws of nature’. ‘All
bodies fall to earth with'the same accelcration’, said Galileo. ‘Rays
of light entering deglser media are bent towards the normal to the
surface’ is part of $hiell’s law of refraction. “Two small spheres carry-
ing charges of.the’same sign repel one another’ is a special formula-
tion of Cowlomb’s law of electrostatic interaction. All these laws
predict wﬁq"a:bsolute certainty the occurrence of a particular event
given céftain specified premises. These laws do not say that ‘most
bodies fall’ or “bodies fall almost always’, the statements made are
¢omplctely deterministic; there seems to be no possibility to relate
them to the concept of probability. The conviction of scientists that
all natural events have an unambiguously predetermined character
is well expressed in Goethe’s lines: ‘Great, cternal, unchangeable
laws prescribe the paths along which we all wander.’

The first instance of a deterministic explanation of a broad field of
practical experience is found in Newton’s Mec_hanics, as developed
n his Philosophiae naturalis principia mathematica (1687). For nearly
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two hundred years thereafter all explanations of natural events
followed the lines set down by Newton’s principles; even Goethe,
Newton’s bitter adversary, was in agreement with him on this point.
The most extreme formulation of Newton’s determinism is to be
found in Laplace’s idea of a *mathematical demon’, a spirit endowed
with an unlimited ability for mathematical deduction who would be
able to predict all future events in the world if at a certain moment
he would know all the magnitudes characterizing its present state,
Scientists have gradually tended to accept this point of view with
respect o the inanimate world and possibly also with regind to
plants and animals, though they may conceive that cvents ofithe past
also exert an influence. In the opinion of the majority, and taccord-
ance with the religious belief in free will, the human mndalone has
freedom of action and of choice. Goethe’s poem¢(Dus Gottliche)
quoted above continues:

‘Man alone can achieve the ’imbmsible:
He distinguishes, chooses-and judges.’

We are all convinced, if only instingtively, that man holds an excep-
tional position in thewoalk-andhihisybetiefrhas a decisive bearing on
our point of view concerningthe possible ‘chance’ occurrence of
events. N

We do not consider it4frange that the number of deaths or of
suicides in a cettain cotn Ty cannol be caleulated in advance with
the same exactness as, for instance, the predicted date of a Junar
eclipse. The first t#q phenomena are directly or indirectly influenced
by human free \gill“a.s cxercised in individual living habits, choice of
residence, inclrrence of risks, ete. We agree that all our decisions are
@nﬂuenced.‘p‘)\ external circumstances, but we do not consider this
influende o’ be necessarily decisive. On the contrary, older authors,
such gs}hc English historian Buckle, were astonished by the relative
unifQrmity of statistical data which made it possible to predict luture

£&¥ents of social life within reasonable limits.

' Some interference on the part of free will can be scen cven in
games of chance, although these bear close resemblance to the pro-
cesses of the inanimate world: We lift the dice box, shake it, etc., the
winmng lottery number is drawn by a child {or mayor), and to the
last moment nothing is known as 1o which roll among thousands his
hand will grasp. We have ot used to the idea that processes of this
kind are subject to the laws of chauce, and that the theory of proba-
bility can be applied to them. )
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Should we then assume that purely mechanical or physical pro-
cesses, the events of the inanimate world where no human hand
interferes, are of a fundamentally different character? Surely, a
mechanical loom carries out its complicated movements with un-
failing regularity and yields products that are piece by piece exactly
alike ? If the kingtic theory of gases assumes that a gas consists of an
immense number of invisibly small particles in a state of violent
agitation, it would then seem to follow likewise (or at least so it
appeared until recently) that the movement of each particle is com- {
pletely and uniquely predetermined by the laws of mechanics. Our
intellectual conscience seems to revolt against the idea that chance
or ‘laws of chance’ could govern such processes, O

CHANCE MECHANISMS &

If, however, we submit this mental resistance to gleser scrutiny, it
proves to be nothing more than prejudice, as is $0 often the case.
What is actually the difference between thé/Spurely mechanical
system of gas molecules in a closed vessel agd the mechanism of a
game of chance ? Let us consider, for instance, a well known method
used through the centuries to obtginyppre. shance distributions—
the lottery. The essential part of thé\fame consists e Iflollovm:ag
steps: A sequence of numbers, say from 1 to 100,000 are printed on
separate, equal slips of paper;“these slips are rolled into small
cylinders in as uniform a wdias possible; all are placed into a large
container which is kept{iit a circular or other motion by some
appropriate mechanjsi finally, a human hand arbitrarily seizes one
of the cylinders. Thcymost important element in this procedure is
that the shakingyof the container should mix the lots in a way which
makes it impessible to follow the fate of any one of them. The
method of thefinal drawing of a lot from the container is considered
to be of ao\iinportance as long as the person who carries it out has
no way.of differentiating between the small cylinders. The best way
to assute this last condition is to avoid the human clement altogether
4nd Yo provide some mechanism which would eject a lot through a
fufinel after a sufficient period of shaking the container. In fact, 1t
has often been suggested that, in order to avoid all possibility of
cheating, the whole process should be mechanized. There is no doubt
that it is possible to construct a completely automatic ‘lottery
machine’. We imagine an electrically driven machine, a roll of paper
is introduced, which in turn is imprinted, cut, rolled into small
cylinders; the rolled lots are mixed and shaken in a container and
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finally one of them, the winning one (or ones), is ¢jecied through the
exit funnel. This would be a fully mechanical device, complete in
itself except for the motor transmission. And yet we are convinced
that such a machine would not yield the same result each time but
would, instead, follow the laws of chance, in the same way as a
collective, so that the machine would eject, in a random manner,
varying numbers for the winning lot.

Simpler chance mechanisms can also be devised. We mentioned
in the previous chapter a game which consists in catching in 2'ebp a
steel ball rolling down an oblique board studded with i, not
unlike Galton’s Board. A chance mechanism of this sorf codld be
achieved, e.g., by fixing the cup in a certain position,\t0”make it &
game of pure chance rather than of skill, and addifg @ mechanical
device for lifting the ball to the top of the boardland rcleasing it
there. $)

AN
RANDOM FLUCTUATIONS

Onee it has been accepted in pringiple’that automatic mechanisms
may produce results that vary agcotding to the laws of chance,
nothing prevents us.framiconsigering thg behaviour of gas molecules
in the same way. One can eveftgo onc step further in these consider-
ations. We mentioned above the gencral opinion that a machine,
such as the mechanicaldobm, will necessarily produce exactly iden-
tical pieces of fabric.(Tét us reconsider this, If two pieces of fabric
produced by the samhe loom are compared by means of ipstruments
more sensitive thap the naked eye, small diflerences in the weave are
sure to be digddyered even if we leave aside faults due to irregularities
in the thread M arger or smaller deviations from the average width of
the mesh;‘}ariations in the angles between the threads, these and
similarjrregularities occur even in the most accurately made fabrics.
Actitally a number of woven pieces will exhibit scveral different kinds

offluctuations; we can compare, for instance, the variations in the
£\ size of the mesh throughout one piece, or we can compare that vari-
“ation for several pieces at a given place. Such fluctuations occur in all
mechanical operations of even the most exact machines.

In speaking of the application of statistics to industry, ITmen tioned
the fact that Gauss’s theory of errors is of great help in the testing of
steel balls for ball bearings. This examplc shows that the rational
theory of collectives is applicable to and is actually applicd in one of
‘the most exact manufacturing processes of modern industry. Accord-
ing 10 the laws of mechanics, the steel balls produced by a completely
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automatic process should be completely determined. And yet this
most exact mechanical process, which in the eyes of those who hold
the deterministic point of view must be uniquely determined, is
found, on closer inspection, to show chance variations. Is there
actually any repetitive process which follows exactly the predictions
of classical mechanics or of another similar physical theory? For in-
stance, are the amplitudes of a simple penduhum, even under ideal
conditions, all exactly equal? It is useless to argue about such
questions. Even if we should find a mechanism which works without
observable fluctuations it is only reasonable to expect that mote
sensitive testing instruments would reveal variations so far hiddén)
On the basis of our past experience we may moreover expect“that
these fluctuations, once revealed, will be found to have the prgpértjes
of a collective and that, probably, the theory of errors wilk be applic-
able to them. ¢

a \Y

SMALL CAUSES AND LARGE EEQ&;CTS

There is, however, an obvious differenee\between the above-
described working of the ‘lottery machineagd the fluctuations in the
performance of a machine producing sigelibadlsli bnathe dagten case, it
is possible to predict the essenfial properties of the product which
the machine has been designed tq thanufacture, The laws of chance
apply only to the small deviationsrom ihis main result. On the other
hand, a ‘chance mechanism’{s built in such a way that ol that
matters, the essential resu}t;’i}to be decided by chance. This formu-
lation stili contains somgthing subjective in that we introduce the
purpose of the mechagical process. If a machine designed to nail
small boxes weregeared to eject its nails by a mechanism similar to
that used for cjecting the winning lot of the lottery machine, we would
still not consideﬁhe former to be a ‘chance mechanism’ even though
the mechaﬁiéaf' setup would be the same in both instances.

From afp}lrely mechanical point of view, regardless of the purpose
of theamachine, i.e., no matter whether we consider the meampgless
ejection of nails for nailing small boxes, or the decisive selecuqn of
the \i}inning lot in the lottery, the following property can be said to
be an essential characteristic of a true ‘chance mechanism’: The
results of repeated operations by the machine differ from each other
by variations that are not of the order of small fluctuations or in-
accuracics, but must be greater than a certain minimum deviation.
In two lottery draws, the tickets winning the first prizes have numbers
differing by not less than unity unless they are identical. On the
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contrary, in the case of mechanically produced ball bearings devia-
tions may have any values however small in relution to the miended
diameter while errors above a certuin small amount wmost rever
occur. We may bring out clearly the characieristic dilference if we
keep in mind that in afl mechanical processes the initial stage is at
least approximately predetermined, [n the lottery machine this stage
includes all operations through the rolling of the lots; during this
stage only small variations can occur. We may therefore bring out
the following essential attribute of a ‘chance mechanism': Smél,
even infinitesimally small, initial deviations develop. i the cougs®of
the mechanical process, into large, finite differences. R\,

Following M. v. Smoluchowski,® the physicist to whofippwe have
already referrcd, we can characterize this essential progeity by the
slogan ‘small causes—large effects’, I will not go asffap at Smoluch-
owski, and to a certain degree also Poincaré? befarc him, who con-
sidered this disparity between cause and effactto be Lhe decisive
property of ¢/l mass phenomena to which prebability calcuius might
be applied. But as far as ‘chance mechanisméare concerned, navikly
automatic devices working in cycics and producing results that form
a collective with a finite number of’ différent attributes, Smoluchow-
ski’s characterizatiamwi@_abmlgnWpﬁ:gﬂn. The lots fall into the
container in the order in whichsthey are printed and as fong as the
container is not agitated thes remain in positions that would be
approximately reproduced.upon repetition of this operation. At the
time the container beging o rotate, the existing small diflerences in
the position of the lo is\produce initial conditions which vary slightly
from one cxpcrimenN another. Under the influence of the roiation,
these small initial yariations develop into completely differcnt final
configurations, with the result that a dilferent winning Lickel Js
produced abthe end of each process.

The cass'of Galton’s Board is even clearer: a very slight difference
in the ‘ﬁei'nt at which the steel ball touches the frst pm determines
the direction of the ball’s first deviaiion, The same pl riy repeats itself

) iphe deviations occurriag at the second and all subsequent rows of

{ “pitts, Itis reasonable to assume that the linal result depends not only
on the slight differences in the initial conditions, such as the velocity
and direction with which the ball is relcased, but also on a number
of outside influcnces coming into play during the process, c.g., air
currents, vibrations of the board, etc. Each of these is in itself 4 very
‘small cause’, but together they decide the ‘either-or” of the course
taken by the ball, whether it will turn to the right or to the left of
the next pin.
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KINETIC THEORY OF GASES

The above considerations may readily be developed to permit us
some insight into the phenomena which constitute the subject matter
of statistical physics. The oldest example, which is in a certain sense
representative of nearly ali the later applications of statistics to
physics, is given by the kinetic theory of the so-called perfect gas.
The generally accepted conception is that space occupied by a gas is
not uniformly filled with maiter, as might appear at first sight, but
that it contains tiny particles, atoms or molecules, moving to and fro
in space with enormous velocities. The motion of a molecule Gsy
rectilinear, but its direction is changed agaiu and again by collisiohs.

At a given moment, each molecule in the gas can be chal:aptéfized
by its velocity, or more cxacily by the three componehts of its
velocity with respect to some co-ordinate system. It appears to be
appropriate, i.e., in accordance with experimental fihdings, to con-
sider the molecules as elements of a coliective, and o apply to this
collective the rules of probability calculus. To arfiye at an agreement
with experience certain values must be assumed for the dimensions
of the molecules, for their number in a given ‘volume, and for their
original distribution. Here arc some fighasy-aliphamilbhe yseful in
our discussion: JSON

We find good agreement withMebservation by assuming that
under ordinary conditions a cubliemillimetre of gas contains 30,000
billion (3 x 10%) molecules The size of the molecules is such that
three million of them lingd"up end to end occupy about 1 mm. The
average velocity is of thelorder of several hundred metres per second.
The average rectilineghfree path of a molceule between two collisions
is one ten-thousandtii'of a millimetre. Each molecule suffers about
five thousand million (5 x 109 collisions per second. These figures
show the apptépriatencss of such expressions as ‘very small’, and
‘very many’>when speaking of molecular phenomena. They also
make cléar why the rules of probability calculus, which actually
presuppose an infinite number of events, apply so well to the practic-
adfy\nfinite number of elements in the molecular collective.

W5 1o the slogan, ‘small causes, large effects’, in what way does
this essential characteristic of chance mechanisms apply to gaseous
systems? To answer this question we must calculate an additional
figure from the above data. The diameter of a molecule has been
given as one three millionth of a millimetre, the mean free path as
one ten-thousandth of a millimetre, i.c.. 300 times as la‘rge. TI’.u:
geometrical conditions are thus the same as if balls 1 centimetre in
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diameter were colliding after a mean fiee path of 3 metres. 1t is clear
that the very slightest deviation from the original direction of a ball
will have a decisive influence on the result of the next collision. if,
for instance, two balls of | centimetre diameter are placed a distance
of 3 metres apart, and the first ball is set in motion along a line
joining their centres, while the second is held at rest. then upon
collision the first ball will rebound elastically and return to its
original position. A deviation of about 9 minutes, i.e., 0.0004 of the
circumference of the circle, from the original direction of the ffst
ball is sufficient to make it rebound in a direction forming apatgle
of 45° with the original direction of its motion. Tnstead of retuphing
to the point of departure, it will pass it at a distance of 3 fugtres. An
Initial change in direction of 16 minutes will produce asdcflection of
907 after the collision. If the deviation is equal to 28 minutes, i.c.,
less than onc-half of & degree, no collision will\eccur at all, the
moving ball will pass the one at rest without tenghing it.

The conditions just described apply, stri{ﬂy speaking, to Boliz-
mann’s original model of a gas consi tiag of absolutely elastic
spherical molecules. This hypothesis hag been abandoned since and
repiaced by models of a more complicated character. The original
theory is, however, very athweohipaeyterdeinonstrate the farge effect
of small variations in the initigl\éonditions on the further cowrse of
the motion of 4 molecule. The next stage of the molecular model.
which foday is likewise autdated in several Irespects, consists in
assuming that each molectle consists of a larger or smaller number
of electrons quickly l'{:’vﬁlving around one or scveral atomic nucled.
Such a model furthésenhances our impression that the result of a
molecular colligién¥s decisively alfected by the slightest change in
the original ¢eiditions of the system, Since it is assumed that the
electrons rexdlve around the atomic nucleus with velocitics much
larger than“that of the molecule as a whole, it is clear that the
smallestichange in the speed or direction of the molecular velocity
willyeompletely change the clectronic configuration of the molecule

_atthe moment of collision. Bricfly speaking, small causes produce in
S case larger consequences than in any game of chance.

A volume of gas containing a great number of molecules appears
thus as a system not different in principle from the automatic lottery
machine previously discussed, or from the Galton Board with an
automatic device for handling the bails. The fact that we have a
kinetic theory of gases which is built on the probability concept, and
yields results in good agreement with ex periment is no more remark-
able than the applicability of probability caleulus to games of chance.
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We may even expect the application to gases to give especially good
results because of the two conditions already mentioned, namely,
the immensely large number of elements in the collective, and the
cxtreme disparity between the small causes that influence the
molecular collision and the large effccts produced. At any rate, a
statistical gas theory no more contradicts the causality principle than
does any other statistical explanation of observed phenomena.

ORDER OF MAGNITUDE OF ‘IMPROBABILITY’

The objection may be raised that a statistical formulation. &f* ¥
fundamental physical law involves practical difficulties aparfufrom
those of a logical nature. How is it possible to test the gtuth of a
statistical proposition? Are we not compelled by experiége to state
that entropy increases in afl real processes or, at leasé, thal its increase
can be expected with certainty if some specific congitions are satis-
fied? At first sight it would scem 1o be a questién of actual fact
whether this increase is a matter of probability sftertainty. To throw
light on this topic, I must discuss somewhatmeore closely the concept
of entropy. The extremely large numbers dEmolecules in a gas volume
and their extremely small size will ey tHirashiboenerme in this
discussion. RN

According to the kinetic theor\y,f'.a’ cubic centimetre of air contains
30 million billion (3 x 10} mplccules, all in a state of rapid agita-
tion. At any given momeni fhe molecules are more or less uniformly
distributed in this sparﬁs‘l‘n the kinctic theory, entropy is considered
to be essentially a meastire of the uniformity of this distribution.
Each of the 1000 tigytubes, measuring one cubic miilimetre, which
compose the cpbie’ centimetre contains, on the average, 30,000
billion molecdles? According to Boltzmann, entropy has a larger
value if the di$tfibution is more nearly uniform, such that each of the
1000 com'p%tments contains about the same number of molecules.
Entropyhas a smaller value if a marked unevcnness exists, such that,
for fstance, one of the small compartments would contain only half
the average number of molecules. Of course, a few more assumptions
enfer into this, e.g., it is assumed that for the whole volume under
consideration, no marked diffcrences exist in the physical state of the
gas from one point to another, such as with respect to temperature
or pressure, whereas such differences would be expected to existin a
larger volume. For an exact definition which would enable us to
determine the value of entropy in a concrete instance, we would ha\fe
to know other factors besides the distribution of the molecules in
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space, such as the distribution of the molecular velocities. All this,
however, does not affect the basic logical structure of the problem.

Leaving the distribution of velocitics aside, we can say that:
according to all our experience, an abnormality in spatial distribution
of the above-mentioncd magnitude, i.e., a reduction to half of the
number of molecules in one cubic millimetre, has never been ob-
served. It is trye that statistical theory docs net completely exclude
the possibility of such a distribution however abnormal it may be, it
merely designates it as being most improbable, To get an ides ofie
degree of improbability attributed to such a distribution e, Blay
caleylate its numerical value as given by probability caleilisl/ The
result of this calculation cannot be written down since it number
with 2 hundred million zeros after the decimal point.¢™\

Such a small number is altogether unimaginable, Y285 us, therefore,
take an example of a less extreme character. Whatis the probability
of the number of molecules in one of the compdriments exceeding
the average numbcr of 30,000 billion by a{Se’n-thousandtil of this
value, i.e., by 3 billion? The result is st &number too Jong (o be
written down; it contains about 60 zepdg after the decimal point. In
this case, however, we can at least give.d certain idea of the order of
magnitude of this protubideyakikE#0EBqual to the probability
of winning ten times in succgsSion i a loitery with one winning
ticket in a million. Such a d&gree of improbability is almost indis-
tinguishable from impossibility.

We thus recognize that experience cannot help us decide for or
against the statisti al ‘ednception in gas theory. From a practical
standpoint, the cqr&quences of the statistical theory do not differ
from those of thé.deterministic theory,

X
(N .
&/ CRITICISM OF THE GAS THEORY

\

I }'}aié“considered the results of certain elemeniary calculations
pertauting to the kinetic theory of gases in some detail because this

Jheory is the oldest and most widely known application of the theory

of probability to physics. The example is not quite satisfactory from
several points of view. One of these has already been mentioned: it
1s the fact that the original simple spherical atoms and molecules of
Clausius, Maxwell, and Boltzmann have since been replaced by
other molecular models. First came, about twenty years ago, the
concept of the atom as a kind of solar system, with ‘planets’ revolving
around a central ‘sun’. This model, due mainly to Rutherford and
Niels Bohr, has in its turn suffered important modifications. The new
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and more general concept which had been anticipated by Ernst Mach,
assumcs that it is impossible to ascribe to the constituents of the
atoms definite places at definite times, in the usual sense. Even more
important from our point of view than the development of our con-
ception of the atom is the fact that the logical foundations of the
old gas thcory have never been complelely clucidated, especially in
their relation to statistics. Boltzmann himself, in his gas theory, had
not completely rejected the point of view of classical deterministic
mechanics when he tried to reconcile his statistical explanation of the{
Second Law of Thermodynamics with a description of the mechan-
ism of molecular collision along the orthodox lincs of Newtartiah
mechanics, Boltzmann's point of view, which was shared by fost of
his contemporaries, was that statistical laws were valid<Qr ‘large
scale’ phenomena, 1.¢., observations made on a finite velume of gas,
while the laws of classical mechanics governed ‘smallstalé’ processes,
namely the motion of individual molecules. Brnst’ Mach rightly
objected that the large scule behaviour requirgd by the Second Law
of Thermodynamics could never be deduc ‘fom mechanical laws
valid for the small-scale phenomena. N}

Mach’s criticism of Boltzmann’s deri%abton of the Second Law _of'
Thermodynamics is so important gadvifortulibiclyyserglten mis-
represented that I feel obliged to sayda few words about this problem.
Mach® has shown that ‘nothingsanalogous to an increase in entropy
can be cxpected to occur ina cf)in'pletcly elastic system of absolutely
elastic molecules’; or inﬁ;ther words, that the Second Law of
Thcrmodynamics ca t.be derived from the mechanics of S]'L‘L'&l]
elastic bodies. He ;%s: ‘How could an absolutely conservative
system of elastic atouts possibly be made to behave asa systtem which
tends towards Afidal state? No mathematical manipulations, how-
ever clever, ¢ainduce this.” Twenty or thirty years ago, .whcn the
kinetic theGay of gases stood high in the esteem of physicists, these
objcctimm\\;sere disregarded. Actually, they aim at the very core of
the nfatiér. Tndeed, by applying the laws of classical mechanics 1o
the Gollision of small elastic bodics, nobody has ever succceded—or
cohld ever succeed—in deriving the thermodynamical properiies of
a gas as postulated by the Second Law; namely a preference for, and
a tendency towards, ‘less ordered’ states, by that we mean states that
exhibit a considerably uniform distribution of molecules, such as
was exemplified in our previous mental exPe_rlment w1t_h the 10?0
cubic millimetre compartments, each containing apprommately the
same number of molecules. ] , )

1 may summarize the above arguments m ihe following way.
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First, Boltzmann’s idea of substituting statistical laws in certain cases
for the usual deterministic laws of nature is in full agrecment with
our conception of games of chance and with the definition of proba-
bility based on this conception. Second, an empirical test to decide
for or against the statistical interpretation of the entropy law is im-
possible because of the extremely small probability value ascribed by
the stalistical theory 1o the cases that the deterministic theory
declares to be impossible. Third, a statistical conception applying to
‘large scale’ phenomena is irreconcilable with a deterministic ¢oh;
ception on a ‘small scale’: statistical laws cannot be derived from, the
differential equations of classical mechanics. The new develdpthent
of atom physics, which we shall briefly discuss at the end’of this
lecture has completely vindicated this point of view whighi-hhave held
for many years. O
We shall now discuss a few concrete problems.of statistical physics
before returning to general questions,
BROWNIAN MQUIGN
About a hundred years ago, the English botanist Brown obscrved
under the microscopewthalb sl gk liquids contain small
particles moving to and fro in apJdncessantly agitated manner. It was
discovered later that this so-called ‘Brownian motion’® is commeon to
all sufficiently small particles suspended in a gas or in a liquid, and
that it represents & mass.phenomenon following the laws of proba-
bility calculus, Sin '\\ife’ are only interested in the fundamental
logical structure of f&s problem, we can simplify our conception by
considering a twosditnensional scheme, We assume that the particles
maove in a zigzde/course in the horizontal plane, excluding any up
or downwaydyvotion, or else, we may say thal we consider only the
projccti%;bf the true three-dimensional motion onto a horizontal
plane. £\ .
Lgt.’us imagine that the bottom of 1 vessel is covered with square
Jmesh eraph paper that divides the plane into a great number, say N,
emall squares. We can now define the following collective: each
Brownian particle is an element, the order number of the square in
which it is found at a certain moment is its attribute. Experiments
agree well with the assumption that the probability of finding a
particle in a given square is the same for all squares, i.e., equal to
1/N. In order to test this assumption, we can derive from the given
initial collective a new one whose clements are observations of the
mementary positions of a certain aumber 4 of particles; the atiribute
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of each element is again the order number of the square in which it
is found. By performing & “mixing’ operation on this collective we
can obtain a collective whose elements are simple alternatives, e.g.,
square No, 25 contains 3 particles, or does not contain 3 particles.
Next, we may take a large series of photomicrographs of the whole
emulsion on a plate divided into N equal squares by a net of co-
ordinates; we can now count with what relative frequency a given
attribute appears, e.g., how often square No. 25 contains 3 particles.
The agreement of statistical theory with observation is remarkably {
good in this case. In a series of experiments carried out by Svedberg'®
in which the mean concentration of particles was 1.54 per square'the
probability for finding exactly 3 particles in one designated Gguare
was calculated to be 0.130. The corresponding relative frsquency in
518 observations was found to be 0.133 {namely 69 'timfes in 518).
Strictly speaking, in order to satisfy the requirement\that the indi-
vidual observations must be ‘independent’ from ene another, it
would be necessary to mix the emulsion thoroughly between counts,
as is done in a lottery or in a game of carc% /Fhe results of expert-
ments show, however, that an agreement\gfytheory and observation
is also obtained if the natural course of phcﬁomen_a is not interrupte_d
by mixing. This is a very remarkableyeadPrulipeemyusealiscuss it
somewhat more closely. N

™
N *

EVOLUTION,OFR PHENOMENA IN TIME

The main interest f{Eh;sical statistics les in fact not so much in
the distribution of, the phenomena in space, but rather in their
succession in rime,(The same was true in the theory of gases, where
we were mainlpintérested in the change of entropy in time. The usual
way of obscryihg the Brownian motion consists in fixing the atten-
tion on en€'square and counting the particles in this square, from
second, \t‘cx%cond, or in other appropriate time intervals. How are
the ruigs of the theory of probability to be applied to such a sequence
of GBsérvations? Do the numbers of particles observed constitute the

&léments of a collective which can be derived from the previously
dBscribed initial collective? Are we dealing here with a collective at
all?

A simple consideration is sufficient to show that this is not the
case. Let us observe the frequency with which a certain number of
particles, say 7, appears in a given square. By repeating the observa-
tion on a very large number of time intervals, we ¢an expect the
relative frequency of the result 7 to appreach a limiting value, thus
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satisfying the first condition of a collective, If, however, our observa-
tion covers not only the number of particles at a certain moment, but
also the number in the same square in the immediately preceding
moment, we will undoubtedly find that 7 follows more frequently
after 6 or 8 than after, say, 1. The sccond property of a collective, that
of randomness, is therefore absent in the sequence under consider-
ation. The physical cause of this behaviour is obvious: During the
small interval between two consecutive observations oniy a limited
amount of motion occurs, so that small changes in the numbef ef
particles must be expected more often than large changes. The time
sequence of observations of numbers of particles in a squaré js/there-
fore not a collective in the sense of the theory of prodability. We
shall see, however, that it is possible to establish a rglaljon between
such a sequence and a collective. In the preceding/ledidre, we have
already met sequences which, without forming sQllectives, could be
reduced to one. It is comparatively simple to inderite a similar opera-
tion in the case of Brownian motion. To sitowthis T will first use the
example of a simple game of chance, thﬁ\to,ssfng of a coin.
PROBABILITY “AFRRR-EFTECTS’
www.dbraulibgary.org.in

Let us consider an alternativg Sith the possible results 0 and 1 and
assume that a sequence of obsevations thus represented by u row of
zeros and omes possesses alithe propertics of a collective. Note, in
particular, that in the J&g run, 1 will appear as often after 0 as
after 1, Let us now caltulate sums of pairs of adjacent results, adding
the first figure to the'sccond, the second to the third, the third to the
fourth, etc, In tig way the original sequence, say

AOTri1010001000101 ...
is convertéd into the following :
O 1221110121001 11,

whig}l contains three different figures, 0, 1, and 2. 1t can be shown
that For this sequence, just as for the original one, [imiting values of
yrelative frequencies exist for each of the three attributes 0, 1, 2. On
the other hand, the randomness of the original sequence has dis-
appeared: 2 can never follow 0, 0 can never follow 2. If, e.g., the fifth
sum were 2, this would mean that the fifih and sixth figures in the
original sequences are both I's: whereas, if the sixth sum were 0, this
would mean that both the sixth and the seventh figures i the original
Sequence are O°s. The two facts arc inconsistent since the sixth figure
in the original sequence cannot be both 1 and 0 at the samce time.
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The above is a typical example of a sequence of numbers derived
from a true ¢ollective, which has itself been obtained from an observ.
ation of chance phenomena. The derived sequence still satisfies the
first condition of a collective but has no longer the characteristic
property of complete randompess. The mathematical analysis of the
situation is as follows:

We consider a collective whose elements are groups of three con-
secutive eicments of the original collective, the first, second, and
third; the fourth, fifth, and sixth; and so on. Each triad can be
characterized by two sums, the sum of its first two numbers and the,
sum of its second and third numbers. The usual rules of the theory
of probability permit us to calculate the probabilitics of the different
combinations of these two sums, c.g., 0-f, 1-0, 2-1, =4 etc.;
according to what was said before, the combinations 8¢2 and 2-0
are impossible. Another collective of the same kind\gag be obtained
by forming triads of the clements 2 to 4, 5 to 7, &ldy and a third by
forming the triads of the elements 3 to 5, 6 ta 8/ etc. These threc
collectives have the same distributions, ie,{the probability of tl}e
simultancous occurrence of two sums, sichjas 2-1, is the same in

each of them. This probability is theréf%'f:g alf% 1}%3 léé_né; {:ﬂ?f th?
; ce o

relative frequency of the combination 21 witht i) _
sums of any two consecutive eli}r»ﬁ'ents of the original cqllectw_«:.
The limit of the frequency of thegombination 2-1 so determined will
generally differ from that ofghe combination 171 or 0-1 anc% this 18
why in the derived sequepec\we cannot speak simply of the proba-
bility of the attribute ]\’%\m the sense of our usual definition.

M. v. Smoluchowski,® who was the first to study this phenomenon
in connexion with/Brewnian motion, has given it the very suggestive
name of probability ‘after-effect’. This, like other suggestive names,
has sometimes Q\"«-en rise to erroneous interpretations. The expression
is meant to deseribe a sequence that results from a random process,
but in which the attribute of an element is nevertheless a_ffected by
the ateiBute of the preceding element (or elements). ;The important
ting.for us is that the phenomenon of probability after-effect octl“
séquences which do not themiselves form collectives can be explaine
on the basis of our theory of collectives which do satisfy the condition

of randomness.

RESIDENCE TIME AND ITS PREDICTION

Let us return to the topic of the Brownian motion. The _3n310%Y
between this problem and the one which we just considered is estab-

lished in the following manner. Imagine that the time of observation
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is divided into a sequence of short elementary time intervals separated
by ‘instants of time” at which the observations are made, We assume
that the changes of position of the particles occur by jurps during
the elementary time intervals. Each co-ordinate of a given purticle
at a given time will be considered as the sum of the co-ordinate at
the initial instant and of the subsequent co-ordinate increment. If we
consider two successive instants of time, each co-ordinate of a given
particle at the latter instant will be thought of as the sum of that at
the former instant plus the change that took place in the interveaing
time interval. For the treatment of the time-development of BrgWnian
motion we therefore require two initial collcetives, The firstgives the
probabilities for the presence of a particle at a given gpet al the
initial instant. The element of the second is the chadgeyin the co-
ordinates of a particle occurring during an elementartime interval,
Thus, the attribute within this collective consistg\of positive or nega-
tive increments of the two co-ordinates of the* particle. In other
words, we assume as given the probabilitits of any specified
_change in position of a particle during afhélementary time interval,
Probabilitics of this kind, which majnbe called ‘transition proba-
bilities’_, are of deci.s\l;ve_ i%%ﬁﬂﬂ?&r?%? only in I;Ille_treatment of
Brownian motion buf likewise i mdny other statistical problems
of physics. &Y

We usc the two collectives-jitst introduced to construct a new one
by observing the n particlés\through & instants of time. The attribute
in this collective conggstg\of the 2 nk numbers representing the co-
ordinates of the n acticles at the X moments of observation. The
next step consists\in ‘mixing the attributes of this Jast collective in
order to obtainza collective whose attribute is the proportion x/k of
time points &0which the number of particles present within a given
square (3, g :having some specified co-ordinates) equals, say, three. In
other Wwords, we can calculate the probability that a given space
‘op‘gicahy isolated” under a microscope will be found to contain
exactly 3 particles at say, 1% of all time points observed. The result

~of.this computation is very characteristic and we proceed to describe
it briefly.

The ratio x/k is called the relative residence time of a specified
number of particles within a given squate. In calculating the proba-
bilities for the various possible values of this ratio {all of which lie
between zere and one), we assume, in accordance with physical
reality, that the number of particles » and the number of squares N
are very large and that the period of observation is likewise con-
siderable go that & is large too. Then we find that amon g all possible
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values for the relative residence time x/k there is one with a proba-
bility overwhelmingly larger than all others, in fact practically equal
to unity. 1 have previousty mentioned that from the first initial collec-
tive we can calculate the probability that a given square (we spoke
of No. 25) contains at a given moment exactly three particles.
Naturally, this probability is a proper fraction and its value in
Svedberg's cxperiment was found to be p = 0.130. The result of
further calculations, in which the second collective, i.e., the “transi-
tion probabilities’, are used shows that, after a sufficiently long
period of observation, the probability of the ratio x/k = 0.130 is
practically equal to unity, In order to be able to describe this restit))
in a short and precise way, it will be convenient to introduce cértain
new terms. £

The value of the probability p = 0.130 was derivedifrom the
simple assumption that the probability of finding & p@r.t:icle in one of
the N squares is 1/N. The argumenis herc used belongressentially to
the field of combinatorial analysis. We may,, therefore, call this
probability briefly the ‘combinatorial probal ifity of three particles
in a certain square. The fraction x/k (Where is the number of
instants of time at which three particles\were observed at a given
place, and % is the total number ofﬂj’(g‘l‘étﬁﬂ&f widbiastheppiod of
observation) has been called by us.the relative residence time. This
residence time refers, of course, 18 the presence of any three parlqcles,
that is, fo the ‘number threg’; and not to three specified pa}‘t.lcles.
We may now briefly fopmulate the result of our calculation as
follows: It is practicall éér{ajn that the relative residence time of the
‘number three' withipna given square will be appl_’oxnr.latcly equal to
the combinatorial qptebability of three particles n this squarc._The
probability of a felitive residence time which wo’ul‘d deviate consider-
ably from the ‘edmbinatorial probability 1s llegl'lg}b]e-

This propesition exhibits the form characteristic of all sta?emergs
made inthe statistics of physics. No deterministic prediction 1s madc

as is done in the usnal

aboupthe future course of a ph sical process, e in
g ; in classical mechanics; instead, a

chutain numerically characterized development is said 10 POssess an
that the probability of any other

overwhelming probability, so

development is exceedingly small. We have noted these same cl’t;i;?;

teristics in reference to the kinetic theoay{?f.gases. Eﬁen;\:egictions

here 1s th: w shown how definite, cOneIv ;
e 1¢ that we have no " be derived by means

concerning the course of a physical process ¢

a : hanics or any
of the theory of probability without any use o e ‘
other ‘deterministic’ science, and even though the corresporllsing

‘pausal’ branches of physics, e.
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sequence of observations does not form a collective, since the
property of complete randomness is lacking. This is the typical
structure of the propositions of statistical physics,

Let us add two brief comments. First, to arrive at the above resuit,
we had to know the distribution in the initial collective, which gave
the probabilities of the larger or smaller ‘jumps’ of the particles. We
found, however, that if the numbers n, ¥, k arc sufficiently large,
the final result was practically independent of the numerical values of
these probabilities. Second, a similar remark applies to the probﬁ-
bility after-effeets: There is an overwhelmingly large probabitity for
the relative frequency of a given succession of particle nyuadbets in a
square (e.g., fust 2, then 3 particles) to be nearly gqual to the
combinatorial probability of this particular successiofl ,“however, the
relative frequency, say for 3 after 2, is different ‘fiomn that for ‘3
after 1" or *3 after 5°, cte.

We have thus indicated how the time sequgiice of numbers of
particles in a square can be rationally treated\py means of the theory
of probability, although it does not form acollective.!!

ENTROPY GHEQHEMIARDY s KOFE CHAINS

Let us return to the fundamntal idea of Boltzmann's gas theory
which we shall now be ablefobunderstand better. Tn his conception,
entropy is a characteristio.of the gas, and we are intcrested in its
variation in time. Evenif"we do not adopt a deterministic point of
view, we have no l'ig‘ht to assume that the successive valucs of a
physical variable‘f%n a collective, ie., that they are distributed at
random like the yesults of a game of chance. In general, the applica-
tion of the theory of probability to vatiations in time of physical
properties7is Similar to that jllustrated in the example of Brownian
motion{ which is why the above invesligation is of such great
impgftance for vs.

X0 make the discussion sufficiently general, we have to replace the
~J0dtion of the after-effect by the broader one of linkage of events,
jor, as it is often called, of ‘Markoff chains’2? The essential point is
that again the main role is played by a collective, whose elements are
transitions, displacements, or jumps of the system from one state to
another. These transition probabilities are hasic in the analysis of
the problem. The numerical values of these transition probabitities
are usually unimportant, only their general type matters; this fact,
however, is irrelevant for the logical understanding of the theory.
The physical characteristic that we considered in studying
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Brownian motion was the number of particles in an optically isolated
field. Correspondingly, for a volume of gas, we may consider the
distribwtion of the molecuies in the different ‘compartments’ of the
‘velocity space’ (or, more precisely, the so-called ‘phase-space’ which
includes both space and velocity co-ordinates). Again, each distri-
bution possesses a certain combinatorial probability, calculated
according to the rules of addition and multiplication of probabilitics.
A detailed study, based on a consideration of the transition proba-
bilities, leads to a result that parallels that in the case of Brownian
motion: We may cxpect with very great probability that the differept,
distributions cccurring in the natural time succession will appear with®)
relative frequencies which are approximately equal to the coures-
ponding combinatorial probabilities. And this holds even“though
this succession does not exhibit complete randomness. I\ns,{sad of the
lerm combinatorial probability, the term ‘thermodygaical proba-
bility" is often used here.

The combinatorial calculations show that ccptdin® distributions of
molecules possess an overwhelming thermodyf@mical probablllt)_z as
compared with all others. This resuli, togethey, with our aboy‘e ﬁndm_g,
leads to the conclusion that a volume of) gas, Ieft to itscll, will
almost always be found in the state of gAETHOS rﬁf‘é HEee R ion.
Furthermore, if at some moment $he system is In a state differing
considerably from the most probi{b&e one, then it will almost _always
at the next moment be found™o have changed in ihe dm?ctlon t_o-
wards the most probable~state. These distributions, whl‘ch claim
almost the whole prob%&iﬁty and therefore also almost the whole
time, are called Maxwell*Boltzmann distributions, because, prior to
Bolizmann, the Emghsh physicist Maxwell had already begun to
Investigate them{ N o

Bolizmann’§/Gecisive and new idea was to recognize that the
thermodyn‘aﬁnfi:ai probability, or rather its Jogarithm, measures the
entropy. Lhe new formulation of the entropy law is thus: A less
probablg'state is almost always followed by a more probable one.
Thisis'equivalent Lo the proposition: The entropy of a system left to
it%el almost always increases. The word ‘atmost’, a symbol of -
determinism, cannot be omitted from these formulations. .

We cannot go beyond these brief remarks. In order to cnter
further into the problems of gas theory, 1t would be neccssarg_ [g
introduce various thermodynamical concepts and correspon ‘lna
mathematical complications. Let us therefore return to thﬁ Su}?p 'y
example of Brownian motion and illustrate the results of the theory

by means of some conerete observations.
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SVEDRERG'S EXPERIMENTS!

. The degree to which the theory of Brownian motion can be tested
is limited by the very naturce of the experiments. It is impossible to
perform so many sequences of observation that one could expect 10
obtain a result of such enormous improbability as thal which we
indicated in the case of kinetic theory. Rather, we may cxpect that a
single sufficiently prolonged sequence of experiments will yicld those
results to which the theory ascribes an overwhelming probabﬂ%’.
Practically speaking, this mcans that the observed frequenty of a
certain number of particles is being compared with the combinatorial
probability calculated for this number. We may mentiQiMh passing
that this is also the explanation for the fact which wé hoted eartier,
that, even without mixing the emulsion between mdéaSurements good
agreement is obtained between the counted Mfaquencics and the
corresponding combinatorial probabilitics, Theexfent of this agree-
ment will be illustrated by the following cxample taken from investi-
gations on Brownian motion made by the&wedish physicist Svedberg.

Svedberg counted the number of particles in an optically isolated
volume of a colloidal sol 1’01110&‘%01(:1 at intervals of 2 scconds. In
518 counts, he found'the fo Sn\lyip:g Telative lg‘rcquencics:

No. of Particles  Oceurrence | ‘ ‘Rel. Frequency Probability
0 112, NN 0.216 0.212
1 ;% 0.325 0.328
2 4 0.251 0.253
3 X\ 69 0.133 0,130
4 N 32 0.062 0.050
5 & 5 0.010 0.016
Y, Il 0.002 0.004
s 1 0.002 0.001

Th&ﬁerage number of particles was a = 1.54. The values of the
prabability p for 0, 1,2, , . . 7 particles computed from this average
L. [valte a by means of probability calcutus are shown in the last
xolumn and are seen to be in good agreement with the observed
relative frequencies. The theory predicts (see p. 191) with a proba-
bility of almost 1 that the relative frequency of the occurrence of 3
particles will be close to 0.130, The corresponding value ol the
observed frequency in the one and only experimental scquence under
consideration was 0,133,

}t is interesting to investigate also the probability after-effects in
this same example. Our table shows that the concentration °1' was
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observed 168 times. In 4 of these 168 cases, no immediately following
observalion was recorded; among the yemaining 164 cases, 40 were
followed imimediately by the valuc 0, 55 by the value [, 40 by the
value 2, 17 by the value 3, etc. The relative frequencies of the values
0, 1,2, 3 inunediately following the value I were thus 407164 == 0.246,
and similarly 0.336, 0.246, and 0.104 respectively. If we now calcu-
late in the same way the relative frequencies of the values 0, 1, 2, 3
immediately following the value 3, we find 0.087, 0.334, 0.319, and
0.189. Comparing the two sets of results, we see that in the latter the
frequeney of a 0 is much smaller, that of a 3 much bigger than in the,
previous scquence which referred to the value ‘1°. This illustrg}és
again the lack of randomness by showing that this sequence (con-
sisting of the observation of successive numbers of particlgsjis not
insensitive to place sclection and is therefore not a colleative.

Tt is nevertheless possible, as 1 have previously explaised, to apply
to this situation the rules of the theory of probabilityfounded on the
notion of the collective. It is possible, for instar@;; to calculate f_'or
certain pairs of successive particle numbers thoge(relative frequencies
which are expected to occur with an o¥srw elming probability.
Omitting details of the caloulation, we findin this way, ¢.g, 0.246
for the pair 1-0 and 0.116 for the pair L0 ot e thetbserved
values of 0.246 and 0.087 respectiyélyy while the probability of the
value 0 by jtself was given in the dbove table as 0.212. Since the total
number of observations in thesabove series was 1ot very large, the
agrcement between theory aid experiment must be considered a good

one. \\ N

N

27 raproacTiviTY®
Another phyg,‘i;:hl phenomenon which has been found to be well
svited to thé\application of the laws of probability calculus is the

emission,@f\rays by radioactive substances. Like Brownian motion,
tually be observed by means ofa

this is a\phenomenon which can ac '
T?laﬂij\aély simple experimental apparatus, where no hypot_hencal
coygepts are involved that are as violently contested by dlfi:ere;}t
schools of thought, as the atoms and molecules of the }(mell_c
theory of gases. The radioactive decay of a substance, say }'ad;um, is
accompanied by the emission of so-callfac_l a-particles, minute _flon;
stituents of the atoms which carry a positive charge. When 1icl enl
on a screen covered with an ap’propriate sensn-we. su?stance, cach
a-particle causes a short flash of light called a scintillation. The time

intervals between successive scintillations have a random character.
185
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A very simple representation of the whole process can be given by
assuming that a very large number of constituent parls of the radio-
active body—and we might as well call them atoms—are a{ cvery
moment (more exactly, at very short time intervals) luced with the
alternative: decay or conservation, with respective probabilities p
and g.

The same problem in a game of chance would be this: A die is
thrown at short regular intervals, and the interval between successive
appearances of the result “6” is noted. Qur initial collective has thus
the simple attributes *6” or ‘not 6. By a k-fold combination wesdorive
a new collective whose clements are combinations of k thrg#$of the
Initial sequence, and whose attributes are the combinatichs'of the &
results ‘6’ or ‘not &’. Next, by a mixing operation™we obtain a
collective with the same elements, but with a new, {hd-dimensional
attribute. This consists of the number z of thrawsWwhich precede the
first 6, and the number x of throws from the Yo the sccond 0, 50
that x — 1 is the number of the result ‘ngt 6 between the two 6's.
By making & sufficiently large, we may distegard the case of less than
two 6’s in the whole experiment. S0

The probability of any given comBination of z and x cun be
calculated by means Hf”t%dﬁéﬁ%};gﬂﬁ&'?f%fcn denote by p the proba-
bility of the result ‘6’, and by.%= 1 — p that of the result not 6,
the required probability is.ffpgp = p%g=¢%. Mixing again, by
adding all cases irrespective of the z-value but with the same value
of x, we obtain the probability of the interval between the first and
the second ‘¢’ beim,%‘\‘eqhal to x. This probability is given by the
series p*g* 1 ¢ F4% — g% < . . .). This series is, strictly speak-
ing, not an infigité one but ends with the (k -- x)th term, £ — x
being the JangeSt possible z value. By choosing a suiliciently large £,
we are, hawever, cntitled to substilute for the sum in parentheses
the comrésponding sum with an infinite number of lerms, ie., the
geomgtrical sequence § + ¢ - g% + g+ ... and this sum 1is
kngwn to be 1/(1 —¢) = I/p. The probability of an interval x

m}ag}wcen two 6’ is thus pg™1; Le., p for x = 1; pg for x — 2; pg* for
x = 3; ctc.

We are now able to calculate the expected value of the time
interval in question by multiplying n the usual way cach value with its
probability, and adding the products. We obtain in this way the result

Pr2pg+3pg+ . = p(l 4+ 2+ 3¢ 4. . )

Algebra teaches that the sum in parentheses equals 1/(1 — g)* = 1/p*
Thus the expected value of the time interval between the first and the
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sccond ‘6°, using an unbiased die with p = 1/6, equals 1/p = 6.
This result is surely not surprising and thase who have not had
enough knowledge or patience to follow the above calculation will
accept it without protest. I have brought in these computations
merely to show once again how this problem can be answered un-
ambiguously by our methods of operating with collectives.

The same value 1/p is obtained if we calculate the expected interval
between the second and the third, or the third and the fourth °6°,
and so on. The mean time interval between any two consecutive
results ‘67 is thus seen to be equal to 1/p, the unit of time being the,
interval between two consecutive throws. P

s W

o
7N
" 4 R

PREDICTION OF TIME INTERVALS o4
o

In trying to apply these considerations to the casg’of radioactive
radiation, the first difficulty that arises is that i do not know
cither the values of p and ¢ or the lengghinef time between
obsarvations. Moreover, we must assume thafithis time interval 1s 50
extrernely small that no apparatus will be s:entsitive encugh tl-? measc,lutre
i ; ; 1 i i a sed to
1te ;c::ll;liat‘f[lji r )chvcrtheiess, the follmi%fgﬁ \gxéﬁrétl}]fglt_arlny A glljl]

We begin by calculating the pl‘oﬁability that no more thar_l tl_1ree
time units (i.e., 1, 2, or 3) elapsé Bbetween two cor%sccutwe SCIllt]:HZl-
tiens. According to the addj\tibn rule of probabilities, the result 1s:

_ 1—¢
p+pg + pg LRV g :P‘l‘f% =1—q

The probability af’ tHe opposite result, namely that there will be
more than three “ime units between two successive scintillations 1s
therefore equ.(ﬁg,\é g* = (1 — p)*. Taking instead of three an arbi-
trary number-, we obtain the probability (1 — p)* that the interval
betweenidwo successive scintillations will be greater than # time umts.
It carybe shown that if p is a very small and n a very large number,
5oy is practically equal to (1/e)"?, where e 18 the so-called ‘té%se
ofvfatural logarithms whose value is 2.718, so tha_t_l/e = 0.3675.
This value taken to the (ap)th power gives the probability of mFer_va]s
greater than » time units occurring between EWO SUCCESSIVE scintilla-
tions. Lot us compare this result with observation. _

We can obscrve successive seintillations for a certain length of time

and note the time interval in seconds betweei the first and thccls last

one. Dividing this time by the number of intervals cpul}ge , we

obtain the mean length of the time interval between two scintiliations.
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Let it be, for example, 5 seconds. If the theory is correct and the
period of observation sufficiently long, the observed interval of
5 seconds must be nearly equal to the corresponding expected value
which we have calculated to be 1/p. The time unit is thus 5p seconds,
and the intervals ‘longer than » time elements’ are those that last
more than Snp seconds. Let us assume np = 2; then the intervals
exceeding Sup seconds are those longer than 10 seconds; intervals
longer than 15 seconds correspond to sp — 3, and so on. All me
need do to test the theory is to count the number of intervals excadd-
ing 5, 10, 15, . . . seconds, to divide these numbers by L}\e::mta]
nurmber of intervals observed, and compare these relative fregucticies
with the probabilities calculated above, ie., wilh the Sheeessive
powers of 0.3679. "G

In a more general way, we can say that if « is thelobserved mean
length of time interval between two scintillation$iz — 5 in the pre-
ceding example}, the computed probability of\intervals longer than
ne is given by the nth power of the numbep3679.

X

MARSDEN'S AND BARRATI) FXPERIMENTSY
. ., www . dbraulibrary .org.in

A series of experiments reported by E. Marsden and T. Barratt
included 7563 intervals betweeirsticcessive scintillations. The obser-
vation lasted altogether 14,595 Scconds. The mean length of an inter-
val was, therefore, 7 = WO30 seconds. The following table contains
the observed frequeuqigs})f the intervals exceeding a certain length (1
to 9 seconds). The fgxf column coniains the same values divided by
7563, i.e., the refative frequencies; the last one the corresponding
theoretical puobabilities. Since 1/a is 0.518, we have first to calculate
0.3679%51%, This gives 0.596. We have then to take the successive

powers qf\{}?s%, from 1 to 9, given in the ast column.

sl vals Relative Caleulated

‘ ‘}firger than Number Frequency Probabiliiy
A% 0 secs, 7563 1.000 1.000
ol 4457 0.590 0.596
2, 2694 0.356 0.355
3 1579 0.209 0.211
4 921 0.122 0.126
5 532 0.070 0.075
6 . 326 0.043 0.045
T 196 0.026 0.027
8 110 0.015 0.016
9 68 0.009 0.009
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The agreement between the two last columns in the table is very
good. Nevertheless, I do not deny that investigations must be con-
tinued and developed in many different directions before we shall
understand the details of these phenomena; many questions in this
field are still unanswered. Our main interest, however, lies in the
general form of the statements which can be made concerning the
evolution in time of physical phenomena by means of the theory of
probability. In this regard, I should like to add the following remarks.

Qur theory certainly does not imply that if in 14,595 seconds of
obscrvation a total of 7563 intervals between scintillations were €%,
corded, it then follows that 21.1% (1596 out of 7563) will havs a
length of more than three seconds. All we know is that 0.211 Is’the
probability of this particular result. Combining this resul€ with the
First Law of Large Numbers, we can state that the prebability that
approximatcly 21.19% of the 7563 intervals will ha¥€ 3 duration of
more than 3 seconds is almost cqual to 1. Or, wdre preciscly: if
scquences of 7563 observations are repeated a grs}t' number of times,
then the vast majority of them will contain approxi mately} 1596 time
intervals of more than 3 scconds. The formofithis proposition corres-
ponds cxactly to that which we deriygdainh qlﬁg%e Of Brownian
motion. In this latter case, we couldisay that if the (foﬁ(g? S‘%quence
of observations concerning the pasueles present ina specificd square
will be repeated a very large nusaber of times, the vast majority of
these scquences will give for s relative frequency of the occurrence
of a certain number of pg:ti}les in the square values nearly identical
with the combinatorialrobability for this number. It 1 essential to
remember that the theory predicts not the exact result of a g.mgle
sequence of obsergafions but the outcome _of_ the great majority of
identical experj ants (each experiment consisting of a large sequence
of observatipns); repeated a very large number of times.

A
RECENT DEVELOPMENT IN THE THEORY

'\ . . ‘
¢ Oiee more I return to questions of the kinetic theory of pgases

which formed the starting point of this lecture. I have said before
that Boltzmann’s first assumptions, which form the original frame-
work of his statistical interpretation of the entropy theorer, }11lz}ve
since been repeatedly altered. One of the primary aims m rcgncl)de _ (1)1;%
the theory was to provide a satisfactory explan_attlon_for the be 1?1VIvia-
of gases at extremely low temperatures. In I.Ihls region ce{éalél e o
tions from the normal gas laws occur which are described as

‘degeneration’ of gases.

OF GASES
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The various statisticul theories which have been put forward in
this connexion may be briefly described as follows: In dilferent
theories different initial distributions of probabilitics are assumed.
We know that such distributions have to be known in any probability
problem. The object of all the theories is (o assume the initial prob-
abilities in such a way that for the medium and high tempcratures the
theory leads to agreement with the older theory of Clausius-
Boltzmann, and, for the temperatures near the absolute zeromit
reproduces a decrease in specific heat paralleling that whicliis actedily
observed. O\

The usual form of a hypothesis concerning the initial distcibitions
comsists In assuming that certain ranges of the attributas br certain
regions in the space of attributes are equally probableh Variations in
the initial distributions of probability are obtained{by/imoedifying the
regions in the space of attributes which arc asjfuned (o be equally
probable. Clearly, the objections against th{usc of the concept of
‘uniform distributions’ that we made when disctissing the foundations
of the theory do not apply in this case\Any distribution may be
reduced to a uniform one by choosing\appropriate co-ordinates and
appropriate ranges of, atirdBrani Bk loisgimportant to realize that
by so doing, onc is making a special hypothesis in each casc, and not
using a principle given a prioth The following discussion js very
instructive in this respect. 8"

N\
DEGENERAT@..bF GASES: ELECTRON THEORY OF
\ METALSY

The classiegkthéory of ideal gases was foundad on the assumption
of equal prg'babilities for all values of the velocity of a molecule,
where the.gqual probabilities are defined as follows: Let us consider
the thieg-Components of a velocity as the three co-ordinates of a
poigtin’a rectangular system. Each point in the space of thase three
cazordinates is a point in the velocity space (which is the ‘attribute

““space’ for our initial collective) and corresponds to a certain possible
N\ velocity of the molecule. The assumption of the classical theory is
that equal probabilities are assigned to equal volumes in this veloeity
space. We will call each element of volume in ihe velocity space a
possible “position” or ‘place’ of the molecule. If we now cousider 4
collective whose elements are distributions of a certain number # of
molecules over m positions in the velocity space, il follows that all
possible n™ distributions have the same prébability. For cxample,
mmagine two molecules A and B, and three different positions g, b, ¢
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The number of different distributions is 9, since each of the three
positions of A4, namely Aa, Ab, Ac can be combined with each of B.
According to the classical theory, all these distributions have the
same provebility, 1/9.

A new theory, first suggested by the Indian physicist Bose, and
developed by Einstein, chooses another assumption vegarding the
equal probabilitics. Instead of considering single molecules and as-
suming that each molecule can occupy all positions in the velocity
spacc with cqual probability, the new theory starts with the concept
of ‘repartition’. This is given by the number of molecules at each,
place of the velocity space, without paying attention to the individual
molecules, From this point of view, only six ‘repartitions’ are possible
for two moleculcs on three places, namely, both moleculés may be
together at @, at b, or at ¢, or they may be separated, o6 at @ and
one at b, one at « and one at ¢, or one at b and ong&tyc. According
to the Bose-Einstsin theory, each of these six cases has the same
probability, 1/6. In the classical theory; cach gfsﬁae first three possi-
bilities would have the probability of 1/9, each of the other three,
however, 29, because, in assuming individuaf molecules, each of the
fast three possibilities can be realized, jo twp different. Wg%?%lﬁi can
be in @, and B in b, or vice versa, B ¢an be In 4, and A1 5t .

The Ttalian physicist Fermi advpaced still another hypothesis. He
postulated that only such distributions are possiblef—and Possess
equal probabilities—in whigh all molecules occupy different places.
In our example of two molecules and three positions, there would
only be three possibilitics, cach having the probability 1/3; ie., one
molecule in @ and ofe in b; ong in # and one In ¢; one 11 b and one
n ¢. s .
In testing tl eée\ and other hypotheses it is assgr_ned, according
to Boltzmapa s entropy theorem, that the p}‘obabllity_of th_e st_atc
of a gas ismeasure of its entropy, and the object of the nweshgat@g
is to [ind which theory best approximates the actua}ily Obset[:e'
deppiidence of entropy on temperature and mass. Fermi’s hypot eils
#agound especially uscful in the study of free electrons in meta hs,
1'%, in calculating the consequences of the assupiption that the

electric conductivity of metals is due to electrons which move fo and

fro between the atoms of the metal as in a strongly raqlﬁed gas.
Tt is not our purpose o discuss these probiem_s here mn morc‘gletf;lli
and still less to express any opisnion about thelr_irelatwe merits. .
as far as the foundations of the theory of probability are conCC;‘ n?it;
we may say that the gas theory with all its modern develol[]JTI:fﬂ:iSSﬁcai
casily into the general scheme which we found typical for all sta .
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theories: We have to calculate the distribution in derived collec-
tives from given distributions in initial ones. If, as in the gas theory,
the initial distribution cannot be derived directly from experiments,
the assumptions must be tested by comparing the results of appro-
priate caleulations with corresponding experimental data.

QUANTUM THEOQORY

Just as in the gas theory, the theory of probability plays af o
portant role in the quantumn theory. This far-reaching develgpment
started in 1899 with a fundamental discovery duc to Max-Planck.?”
The atomic concept of matter had been developed mueh earlier,
mainly on the basis of chemical evidence. The asgumiption of an
atomic structure of electr_icity was put forward towgdds the end of
the last century as an wnavoidable conscquehéd of experimental
results and the hypothesis was confirmed that gt electrical charges
consist of integral multiples of elemcntagyﬁhargcs, the elementary
charge being that carried by a single ¢ledtion. Despite these prece-
dents, Planck’s assumption of the atomie’structure of thermal emis-
sion was a daring new idea dﬁ?&?uﬂﬁ%lf ﬁ?ﬁ%‘ﬁl atomic theory of light
has developed from if. N

Planck’s original assumption)Was made in order to explain a
certain observable dependencgof thermal emissivity on temperature.
Planck supposed that the@mission of thermal energy by a body was
the result of the actjots of a large number of ultramicroscopic
‘oscillators’. The c@&cteristic property of these oscillators is that
they absorb and émit'energy only in quantities that arc mul tiples of a
unit of energy ealled a “quantum’, The quantum is directly propor-
tional to thef€quency of an oscillator. If, as is usually done, we
denote by i/ #lic frequency, i.c., the number of oscillations per second
of a gi\ﬁq'n’oscillator, then the unit of energy for this oscillator equals
hv, where h denotes Planck’s universal constant. In the metric system,

NS = 6.55 X 10~¥ gem?/sect.
LConsequently, the energy of the oscillator emitting yellow light with
a frequency of abouty = 5 % 10%, is cqual to v = 3.3 x 10-'%erg.
(One erg is the amount of work needed to lift one milligramme
through one cm.)

According to this theory, the emission of monochromatic light,
that is light with one single frequency, », occurs in the following
way: We have 4 large number 7 of oscillators at this frequency each
containing 0, 1, 2, 3 or more quanta. We consider these oscillators as
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the elements of a collective with the number of quanta as its ativibutes.
We must assume a certain initial distribution in this collective, ie.,
probabilities for oscillators with 1, 2, 3, . . . quanta. The simplest
assumption is that for an oscillator all possible numbers of quanta
are equally probable and this leads to acceptable results. From the
above collective we can, e.g., derive a collective such that each of its
clements consists of # oscillators possessing together a certain total
energy E. The attribute within this collective consists of the distri-
bution or ‘repartition’ of the possible numbers of quanta over the 7
oscillators, i.e., how many oscillators possess one quantum, hoWw,
many have two quanta, etc. One of the various possible distribu-
tions is thc most probable one. If » is sufficiently large, a Law of
Large Numbers permits us to expect with great probability that the
actual distribution at an arbitrary moment will glmost equal
the most probable one. (We see that the case is simildt )Xo that of the
Maxwell-Boltzmann distribution in the theory of\gases.) Using the
known thermodynamical relations between temperature and energy,
we can calculate the energy of radiation in #&lation to the tempera-
ture, a problem which, as we previousi\mentioned, formed the
starting point of Planck’s investigatigs., dhea.dt¥-{hys,qbigined.
which is known as Planck’s Law, s confinmed by very exact
observations, ONT

From the point of view of thesprinciples of the theory of proba-
bility, the same reasonings#nd deductions can be applied to the
above problemis as to thesa'in the kinetic theory of gases. I may
therefore refer Lhe readér\back to these discussions especially as re-
gards the role of trangition probabilities in the study of the evolution
of phenomena inytime

I should menfion that Planck’s original assumption was further
developed byw&nh)ert Einstein in 1905, Einstein introduced the con-
cept of qu@td of light with energy unit equal to v and conceive
light as being composed of atoms or ‘photons’. A statistical theory
of lighit-ean be derived from this assumption. It contains, however,
Ce‘ftq,in clements which did not oceur in the statistical theory of gases,
gnd in order to explain this new stage in the development of the statis-
tical theory of quanta, I must first deal with a more general problem.

STATISTICS AND CAUSALITY

When I spoke of Brownian motion and of radioactivity, indi-
cated the essential difference between a physical theory based on
the usual notion of causality and a statistical theory. Deterministic
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theories claim to predict the occurrence of events with certainty and
precision from the initial data, while the statistical theory merely
states what is expected to occur in the majority of cases in a long
sequence of observations. At the beginning of this chapter, we men-
tioned that the transition from the deterministic to the statisticul
coneeption of certain physical phienomena was mainly due to Boltz-
mann’s new interpretation of the classical law of entropy, first sug-
gested about 1870, At that time, this meant breaking with the
most cherished conceptions that had served physical scicnce so il
for over two centuries and had also penctrated into the minds of
laymen. However, we are now living in a period of rapig-devElop-
ment of physical theory; Boltzmann's gas theory . and” similar
concepts, such as the theory of Brownian motionthe! theory of
radioactivity, and Planck’s thcory of oscillators{dre now called
‘classical statistics’, and a new system, the “Soicalled guanturm
statistics, hag developed which gocs much further’ in revelutionizing
the conceptions of physics, Before beginnjfibthe discussion of tius
Jast point on my programme, I must add-a\ew remarks on the refa-
tion between classical statistics and thé\ss-called law of causality.

It is neither possiblenor assasanshio disguns here all the problems
usnally associated with the term ‘faw of causality’. One more rcason
to dispense with a full discusgion is that Philipp Frank!® published
in 1932 an excellent detailed~monograph on this subject. We shall
briefly consider the only“point of interest to us, namely, what is
meant today by the caffsal explanation of natural phenomena. For
this purpose, we neéd\\qi’)t trace this concept back to its roots in pre-
scientific philosophy. Rather, we may consider it to have originated
simultaneously @ith what we call today ‘classical’ science, namely
with Newtorfs>undamental work, Philosophiae naturalis principia
rathematicd,/In his mechanics of particles, Newton gave us the first
exampleofa causal description of observable phenomena. For a long
time thereafter the meaning of the word ‘explanation’ was to remain
identical with that of ‘causal description’ in Newton’s sense. A wide

variety of phenomena were shown by Newton to appear as Jogical

eonsequences of a small number of simple fundamental laws or

axioms. What was the most important tool used in constructing this
great edifice ?

CAUSAL EXPLANATION IN NEWTON’S SENSEY

[t was no accident that Newton, the founder of classical mechanics,
was also one of the creators of differential and integral caleulus. The
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use of calculus in deriving consequences from fundamental axioms
is inscparable from Newtonian mechanics and from classical physics
in general, The Lypical procedure is as follows: Axioms or funda-
mental laws are expressed in the form of so-called differential equa-
tions which state relations between certain physical variables in very
small clements of space and time.

For example, in mechanics such a relation connecis the velocity
and position of a body at a given moment fo its velocity and position
at an immediately preceding moment. The mathematical process of
integration then serves to derive from this differential law the change$,
in velocity and position of the body in a finite time interval. N

Tntegration, however, can only derive from the position and-the
velocity of the body at a certain moment, jts position and yeloeity at
a later moment, This imposes a considerable limitation ghlour desire
for a causal explanation. We are not told why the eatth is revolving
today, in a certain sense, with a velocity of 29.6 klp/sec, nor why it
is at a distance of about 23,400 earth radii frgmtthe sun, unlessl we
accept the following as an answer, 1.e., as.a, causal explana_t:lon:
‘because one month ago it had a certaiph {jetoci_ty and occ:uptcd a
r_:ertain position’. Indeed, it is essentia;\l(x,ggaggg&gﬁ%ﬁ%}!%ﬁ see
in such a consequence of Ncwton’s;jnechamcs a causalgxpianation
of the corresponding phenomenondlie educated layman who hears
for the first time that classical methanics does nothing more t_han
calculate the velocity at a %en moment from that at a previous
moment will surely call thi'a description rather than an explanation.
Physicists were, howevet, distressed and annoyed when Kirchhoff, in
1874, advanced thig“yery conception previously put forward by
Ernst Mach, namly, that mechanics merely provides us with a
systematic description of motions in the simplest possible terms.

We shall undérstand this point more clearly 1f: we remember the
historical dpvelopment of the problem. In Kepler’s wprk we Caél seo.;
the kind'0f questions originally raised in connexion with the study of
the mdtion of celestial bodies. At school we learl}ed Of: Kepler's
i aws which were discovered as the resuit of painstaking obser-
vatons of the planets; these laws, we were taught, were g{l;’eﬂka
unified explanation through Newtonian mechanics. The text 010. S}-i
however, do not say that Kepler also stated many other laws whic
bear no relation to Newtonian mechanics. HE_POStummd’ for in-
siance. that the axes of the orbits of the five major planets are pro-

. i ic bodies (tetrahedron, cube,
portional to the sides of the five Platon hare. Tt is not
octahedron, etc.) inseribed into one and the same sphere.

essential whether this assertion is correct or not. What 15 1mp;g£5ant
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for us is to note that Newtonian mechanics cannot be meaningfully
related to this question. The initial position of a planet, that is, its
distance from the sun at a given moment, is required by Newtonian
mechanics as one of the input data needed in the calculations. Only
by exercising a strong intellectual resignation with respect to a
number of the questions which were raised in Kepler's time con-
cerning the solar system are we able to say that these problems have
been solved by Newton. All the developments that followed Newton's
theory, including the celebrated theory of relativity, did not chagg®
this situation. A

£ X
2 N

"N

Ny

THE LIMITATIONS OF NEWTONIAN NTECHAN:ECS

Someone may protest against my last statements’@nd argue that
mechanics did not stop at the description of the\¢irent state of the
motion of the stars but, beyond this, permits conelusions concerning
the origins of the solar system and so apprdaches problems of the
type discussed above. We may, for cxampls; assume that the solar
system was at first a single ball of Lighid matter, as suggested by
Laplace. We can further sudtboud itgetyherfoimation of the celestial
bodies from this mass occurredNi’ accordance with the laws of
Newtonian mechanics. The finahstate of the system must then follow
from its original condition,~afid this final state would provide the
initial conditions for the n§¥ stabilized motion of the celestial bodies.
At this point, howeygr,,\another intrinsic dilliculty of Newlonian
mechanics becomedidpparent, and this is even more important than
the first. I have sigt mentioned it before, in order to avoid undue
complicationgthe first discussion,

In additio\zsluto the two classcs of variables, position co-ordinates
and velogities, the differential equations of mechanics, as well as the
laws obtaified by their integration contain certain magnitudes called
‘foreés’. In order to reach conclusions of the type described above
bysway of differential cquations, we must know how these forces

¢“depend on the position and the velocity of the bodies in question.
Thus, to describe the evolution of the solar system by means of
Newtonian mechanics, we must know the laws governing the forces
that operate in this process. If we say that Newtonian mechanics
explains or describes in simple terms the motions of celestial bodies,
it is because only one simple type of force, or rather one single law
of force, occurs in all the corresponding equations. All astronomical
motions (with a single exception) could be interpreted satisfactorily
by means of the one assumption: that bodies attract cach other with
206
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a foree inversely proportional to the square of their distance (New-
ton's universal gravitational force). One of the most momentous
steps towards a more unified understanding of nature was Newton's
proof that an apple falling from a tree and the revolution of the
moon around the earth are described by equations containing one
and the same assumption concerning the acting force. In such a case,
we may indeed be inclined to speak of a causal explanation of the
phenomena, i.e., their reduction to a common causc, ‘gravitation’.
Further development showed that even most of the details of the
motions of the celestial bodies can be derived by the application ofs

the law of gravitation with all its implications. This law, howeyérs,

does not help us at all to understand the history of the solar syStem
before it attained the comparatively stationary state in whichwe find
it now. R?s.

In speaking of Newtonian mechanics, we do notg@]}l'y refer to
astronormical theory. The motions of all material badies'on the earth
are correctly described by the differential equat'%us of Newtonian
mechanics provided that appropriate expressienstor the forces are
ntroduced into the equations. For exampies the theory \fvorks per-
fectly if we deal with complicated systemﬁ\mg@bﬁl}h@,pgpg}gg%?g the
diflerent parts of a steam engine. All thatus needed is the’knowledge
of the forces coming into play in the.gylinder as a consequence of the
thermodynamic process. N\

Let us, however, considerza, mechanical process, such as the
motion of a great number pfuhiform steel balls on Galton’s Board.
It appears at first sight gelfevident that Newtoman mechariics must
be valid in this case as well. What assumptions, however, are we to
rake about the forges?If we assume no force but that of gravitation,
the essential resuft\of the experiment will remain unaccounted for.
In each collisiomyof a ball with a pin, a very small foree component
decides abox(:}‘ﬁe direction of the ball to the right or to the left of
that pin. This small component may, perhaps, be due f0 air Curr ents

that areSinavoidable on account of the differences in pressure and

temperature in different parts of the room. To describe adequately
tfe.thovement of balls on Galtop’s Board by means of Newtonian
mechanics, it might thus be necessary to kiow exactly the nature of
the air currents in the room. Our desire for causality Wll'l, however,
remain unsatisfied if we make an assupiption CONCerming the air
currents in order to account for the observed facts 10 a satisfactory
way: we will wish to inquirc further into the causes of these ;urfcntts;;
i.e., we will wish to apply the equations of Newtonian mechames

them as well, and therefore, we will want to know the laws of forces
207
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causing the air currents. We shall, however, not feel satisfled unti!
we have found a simple assumption from which all the observed
phenomena of this kind can be derived. Then at last can we fzel that
we have given a causal explanation of the phencomena under
investigation.

SIMPLICITY AS A CRITERION OF CAUSALITY

Thus we find on closer consideration that a causal explanation of
natural phenomena does not merely imply the existence ©f the
typical paitern of classical mechanics (or classical physics tpgeneral),
i.e., a system of differential equations which can be intcgrdted given
cottain initial data, but that the additional criterigii of a cerlain
simplicity of ali the ussumptions is required. An ingffuctive example
is found in the very theory of planctary motion¥ It was discovered
that a certain factor in the motion of Mercury eguld not be explained
by means of the gravitational interaction bp.tw}en this planct and the
other known members of the solar sysigm Nt would, of course, have
been possible, without violating the/hpchanical equations, to ac-
count for this effect A SoHPPrECEEISE VR Mercury's elliptical orbit)
by assuming the action of othey{férces. These could ecven be con-
sidered as gravitational forcegiby postulating the cxistence of great
masses of dust in the neighbourhood of the sun which would act as
appropriate invisible .SOL\rdces of gravitation, However, the desire ft_)‘:
causality was not satisfis by such hypotheses. Only when Einstein
showed that by c-h{{hg'ing our methods of measuring times and
velocities, the pgeession of the perihelion of Mercury could be
quantitatively degounted for without assuming new forces, did most
intelligent p@,sicists accept this view, although it required intellectual
sacrifices-il.Other respects. From this example, we can see that the
postulates’ of classical physics, which make all events appear 4as
unigyely determined, satisfy our desire for causalily and are accepted
asaicausal explanation of nature only if this is achieved by means of
sufliciently simple assumptions concerning the forces introduced in
the basic equations.

This condition of simplicity is not satisfied and cannot be satisfed
in the case of those physical phenomena to which we apply the prob-
ability concept. Tt is a pure illusion to think that the motion of the
balls on Galton’s Board can be given a *causal’ cxplanation by means
of the differential equations of classical mechanics, becanse, from a
formal point of view, these equations can be said 1o determine un-
ambiguously the course taken by a ball. And, if we try to arrive at a
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better understanding of the motions by applying more and more
exact experimental methods, we shaill soon find ourselves in new
difficultics. Close microscopic examination of the air currents or of
the surface of the solid bodies will merely reveal everywhere processes
similar to that of Brownian motion. Instead of finding something
which, from the point of view of classical physics, is more simple
than the original phenomenon, we arrive at phenomena that are
more and more complicated (from a deterministic point of view).
Actually, it is well known today that the precision of all measure-
ments, even of the simple measurement of length, is limited by the,
existence of Brownian motion. We shall discuss later further diffi~)
culties in cxact measurements which are of an even more fundamazﬁal
nature. £

All this shows that the customary and suggestive conlepts of
classical physics are not applicable beyond certain Hpits,

GIVING UP THE CONCEPT OF Cf\.Ué’ALlTY

At this point, there appears a new thegry,:\the theory of proba-
bility, which shows a way by which d.eﬁgﬁ@jggp&}@ggﬁﬁgpl%ﬁﬁnng
the course of certain natural phenoméha—namely those which we
have defincd as mass phenomenaeéan be derived by means of
logically unassailable argumentstfrom simple assumptions about
certain initial distributions, The, statements of this statistical theory
ar¢ not in disagrecment wiilithose of the deterministic theory, they
do not even compete yith- them since they are of another form;
they only state what wﬁ‘ occur in the majority of cases, in a great
number of identicabexperiments. ) _

The empirical sgfulness of the theory, i‘e.,.thc confirmation of its
predictions by/gbservations, has been established be}_/ond doubt in
many diff up ficlds. The intellectual resistance which stanc.ls,' or
stood un;ii\*cc::ntly, in the way of a general acceplance o_f statistical
theoriesli$ of a psychological rather than of a ]oglcal nature.

W\é..(\:'crtainly ought not to undercstimate the influence exercised 0n
oby intellect by the century-old habit of a deterministic concept of
nature. However, and I have discussed this in some detail else-
where,® in the last few decades we have entered upon an epoch
characterized by the development of specu}atiye science on an umn-
precedented scale. As a result our whole scientific outlook has beeg
broadened and fully transformed, The ﬁrs_.t great e_vent of thJ?J epocd
was Einstein’s theory of relativity which stirred up interest far beyon

the community of physicists. And yet, however great a task it was for
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us to modify our deep-rooted habits of thinking, our old-established,
near-sacred conceptions of time and space, all this appears almost
insignificant beside the revolutionary upheaval created by some other
ideas of modern physics. Using the tools of probability and statistics,
these new concepts have Jed us from the kinetic theory of gascs to
quantum theory and wave mechanics. It now appears inevitable that
we must abandon another cherished notion that has its origin in
everyday life and pre-scientific thought and has been elevated to the
rank of an eternal category of thought by overly zealous phifo™
sophers: the naive concept of causality. O\

"\

THE LAW OF CAUSALITY? PAY

If we consider the vague and varied formulat\ioi'ls which have
been given by leading philosophers to the law™\of causality, we
come to the conclusion that it is not at alldsy, perhaps hardly
possible, to contradict this “law’. The first edifion of Kant’s Critigue
of Pure Reason says: ‘All that happens.(befins to be) involves the
existence of something before it fromMwhich it follows according to
a rule’. In the secondwditi:ﬂn',auhisy{nﬁmm@tion is replaced by: "All
changes occur in accordance withithe law of cause and effect’. [t
would be perfectly possible togadapt any system of rules, including
those of statistics, to these gengral conditions and this would amount
essentially to deciding iné3ch given case what is meant by ‘change’
and ‘occurrence’, by iqal;\se‘ and ‘effect’.

When Galileo diScovéred the law of inertia through his obsciva-
tions, the notion that a continuous displacement can occur without a
continuously, agihg cause was surely in contradiction with the con-
cept of causa;hity of his time, However, when generations of physiciStS
{found thela% of inertia and its consequences to be a most convenient
basis {r'the systematic description of the phenomena of motion, the
phileSophers yielded. In fact, Schopenhauer and many others went
so8r as to state that the law of inertia was an unavoidable logical

¢oensequence of the law of causality and held that only changes in
velocity needed a cause but not changes in position. If the physicists
had discovered that the causes influencing motion, the so-called
‘forces’, are proportional to the third derivative of the co-ordinate
with respect to time instead of to the second, the philosophers would
have declared the law that ‘a body left to itself moves along a para-
bola’ to be in agreement with, or even ‘an unavoidable consequence
of’, the principle of causality.

Similarly, we can find formulations of statistical propositions that
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are in uccord with the ‘law of cause and effect’. If a ‘double-six’
appears on the average once in 36 casts of two dice, we can say that
the ‘causs’ of this regularity is the fact that each die falls equally
often on each of its six sides. All deviations from the frequency 1/36
can be said to be ‘caused’ by the ‘bias’ of the dice. When the balls
rolling down on Galton's Board form the bell-shaped curve, we
might say that the ‘cause’ of this result is that if a ball hits a pin
repeatedly it will turn equally often to the right as to the left. Such
statements may be countered by saying that no cause can be indi-
cated for the single result in either the game of dice or Galton’s,

Board, or that fluctuations in short sequences of obscrvations dre 2.

not traceable to special causes, However, in the case of the ]aw\of
inertia we agreed to dispensc with a cause for the displacemients
(required under a more naive conception) and were stistied” with
having just a cause for the accelerations. I therefore foTesce the
following devclopment: At such time when plSics, and more
generally natural science based on observations, s I} have compiete-
ly assimilated the methods and arguments of $1& istical theory and
shall have recognized them as essential tgols,x the feeling will dis-
appear that these methods and theories mﬁa@i%g@}pﬁig%{fﬁcd,
any ‘neccssity of thought’, or that th&y leave some philosophical
requirement unfulfitled. In other wafgs, the principle of .causahty is
subject to change and it will adjust itsclf to the requirements of
physics.
o

NEW QUANTUM STATISTICS

Thus there scemstd-be no serious danger of a permanent check fo
the development (Of Statistical theory due to arguments of a philo-
sophical naturé,ror rather due to the adaptation to established
routines of siesight. Tt cannot be denied, on the other hand, that the
Tecent dew.lbpment of physical theory has met w11:1} QLﬂicultles which,
in the ,Qi)ihion of a number of coptemporary physicists, have not yet
been/ovorcome. In the last paragraphs of this book, I will deal briefly
with/the problems which arise out of the new quantum statistics
created by de Broglie,?? Schroedinger, Heisenberg, and Born.

Let us first recall what was said on the subject of the theory of
errors at the end of the last lecture. Bach physical measurement 1s a
repetitive event, and can be considered as an element in a collective.
A collective is fully described by its distribution, 1.&., by the proba-
bilities of afl possible values of the attribute, in this case the possible
results of the measurement under consideration. As we have seen
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before, a distribution may be partly characterized by meaxs of two
statistical functions, the mean and the variance, which, if the distri-
bution is known, can easily be calculated. The mean vaiac 1s obtained
by multiplying each of the different attributes by its respective proba-
bility and adding the products. For an ordinary die the mean value
is therefore 1/6 (1 42 -3 —4 - 5§+ 6) = 3.5. The variance is
calculated by subtracting the mean from cach value of the attribute,
squaring these differences, multiplying each square by the respectiye
probability and summing the products, Tn the case of a true diéthe
variance equals: \

L6(1 — 3.5 £ 1/6(2 — 3.5 + 1/6(3 — 3.5 - 1/6(4 £53.57
SJ6(5 — 351 4 16(6 — 3.5 = 1/6 x 17.5 =292

The mean and the variance are unambiguously determined by the
distribution, but a distribution is, of course, pot determined by its
mean and variance: A number of different distributions have the
same mean and the same variance. Vo \\d

In dealing with a collective formed, byf\sticcessive measurements
of a physical quantity, the mean is oftew called the ‘true value’ of
this quantity, a terny detiderbulibmrgtore - tonceptions of classical
physics. The variance is usually considered as a measure of inexact-
ness or lack of precision of thewgieasurcments. Further on we shall
see to what extent this is justifiable, The variance by definition equais
zero in one case only, namgly if the probability of one single attribute
equals unity, the probab:ﬂities of all other attributes being equal to
zero. The value of Sthis attribute is then, of course, also the mean
value. Consequently, if in a particular casc the variance is very small,
we can assume(fhat almost the whole probability is concentrated on
values that 4ré close to a certain fixed value, so that it is almost
certain that.deviations from the ‘true value’ are very small.

We ate’ now interested in the following question: Is it always
posgible’ to indicate a method of measurement of any unknown
magnitude such that the resulting variance wiil be arbitrarily small,

¢and ultimately equal to zero ? Classical physics considered this possi-
bility as self-evident and the notion of the “4rue value’ sprang {rorm
this conception. In the first period of physical statistics, in the days of
the original kinetic theory of gases, the theories of Brownian motien
and of radioactive decay, the current conception in this respect was
that a fundamental difference had to be assumed between two orders
of magnitude, the ‘microscopic’ and the ‘macroscopic’ one. Each of
these was made the subject of a separate branch of physics, namely,
‘microphysics’ and ‘macrophysics’. The latter is concerned with
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variables that are defined in connexion with large numbers of mole-
cules, e.g., the length of a rigid rod, the weight of a body, etc. It was
considered that magnitudes of this kind could not be measured with
absolute exactness just because they always represent a statistical
system, such as a mass of molecules. On the other hand, all magni-
tudes characteristic of an elementary particle, such as co-ordinates
and velocitics of a single molecule, were supposed to be exactly and
unambiguously measurable, ie., with a variance equal to zero.

N
N

ARE EXACT MEASUREMENTS POSSIBLE? # A
"N\
The new quantum statistics teaches, however, that in the,case of
elementary particles exact measurements are even less( “passible.
More precisely, it asserts the theorctical impossibility ofdyhultanecus
exact determinations of the various magnitudes ‘¢haracterizing a
given particle, Tn fact, from this theory there follows a formula con-
necting the variances of associated measurementsy so that whenever
one of the variances becomes very small, alcertain ot_hcr variance
must increase. We are now going to stuliy\these questions in some
detail. _www.dbraulibrary org.in
What is the origin of our belief thatthere arc methods qf' measure-
ment by which a quantity may be deférmined with any desired degree
of accuracy ? For instance, let n§measure the length of a table with
a tape measure. Asked fop(@result in whole centimetres, we can
easily obtain an unambigcr&us answer. In other words, the repetition
of the measurement willalways give the same result, say 97 em. The
restlts form a collegtive with variance practically equal to zero. We
are nevertheless, not nclined to call this an exact measurement since
the vanishing, &iriance is only achieved by means of selecting 2
comparativ,cly.\l‘arge unit of measurement. The result 97 cm gl:;a;n;
only thaf the’length of the object is roughly between 96.5 and 97,
cm, and'we cannot even state that these are precise bounds. _
MQfé'exact methods of length measurement are most certainly
Available. To fix a so-called base line, the surveyor uses a v:lg
claborate device permitting him fo measure lengths to a thousan h
of a millimetre. Repeated readings taken with this mstr.ument give 2
scquence of integer numbers forming a true co]]ec‘tlve Wltg a ngéiﬂ;e
well exceeding zero. Nevertheless, this method is const Etl';_ ot
more accurate than the preceding one, because, Xpressine t:: deter-
in the customary way, we may say that the lengthdwe WISI £ working
mine Jies within perhaps 0.05 mm. of the measured one. 11,

i . _ fa
with this instrument, we had recorded the reading to one tent};;;
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millimetre only, then the variance would probably again have been
reduced to zero.

We can imagine & still more improved measuring device which
would permit us to determine with vanishing variance readings to a
thousandth of a millimetre or stilt smaller units. This improvenient
would, however. not be of much usc in surveying. The earth’s crust
15 not rigid enough for a distance of. say. 200 m to remain constant
to within 0.001 mm. Such measurements. even those made with t~|$
highest degree of accuracy obtainable, belong to the domaitne
macrophysics. a field in which exact measurcments werg{alier
admitted to be impossible. according to the concepts qf\plassical
physics, A

Let us now consider the case where the object of nlsasirements is
microscopic. LY

POSITION AND VELOCITY OF A \\-!.-:\'tk'f{lx\l. PARTICLE

The physicist, W. Hcisenberg, ong gfthe founders of quantun
mechanics, was the first todkjqueﬂ)igage Wwhal happens when we try to
determine more and more eiﬁgtly;‘?i{é';ﬂﬁﬁsﬁgai variables characteriz-
ing the state of a single particley Te., its position in space and its
velocity, or its position and itsyMomentum.

First, let us try to fix the' position of the particle in space. We
place it under the micro§eope, illuminate it, and try to find its co-
ordinates. The exacipéss with which small ohjects can be located
under a microscependepends on the wave length of the source of
illumination. The Smallest distance which can be observed under the
microscope isypeoportional to the wave length of the light used. 1f we
want to fixsthe position as exactly as possible, we have to use light
of a very\short wave length, and consequently, of a very large
frequg&xy:

. According to the modern concept of light, an illuminated particle
is“continuously struck by a large number of light quanta, The whole
Process is of a statistical nanire such as Br(;'wnjan motion or the
motion of molecules in a gas. The energy of each light quantum is
inversely proportional to its wave length. The impact of the quanta
affects the state of motion of the particle, and this effect increases
with the increase in the energy of the quantum, that is, with an
increase in its frequency or with a decrease in its wave length (this is
the so-called Compton effect). We are thus in a dilemma: the in-
crease 1n accuracy of the measurement of the co-ordinates of the
particle requires the use of light with a very short wave length. The
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shorter the wave length, however, the stronger is the disturbing
influence on the mcasurement of the velocity of the particle. It
follows that it is fundamentally impossible to measute at the same
time exactly both the position and the velocity of the particle.

The main point at issue here is not, as has often been stated, that
the process of measuring influences the state of the object to be
measured and thus Jimits the possible extent of precision. Such inter-
action also cxists in certain instances of marcophysics, ¢.g., the intro-
duction of an apparatus for measering the dynamical pressure of a
fluid affects the pressurc. However, in this and other such casesgwe)
know how to apply appropriate corrections, The condit.io@ in
micromechanics are fundamentally different: the cssentia&l.p‘oint is
the assumed random character of the disturbing lightyquanta, a
phenomenon which cannot be accounted for by, adeterministic
theory of the type of Newtonian mechanics. g

The essential consequence of Heisenberg’s considerations can be
summarized by saying that the results of cﬁ}neasurements form
collcetives, In the realm of macrophysics the€ gbjects of measurement
are themselves statistical conglomerates, &u0h as the Jength of a ruler
which is a mass of molecules in motioRAwhhe ABHiaY; oEAY @%thely
exact lengih measure has therefore! abviously no meaning with re-
spect to objects of this kind. In migrophysics. where we are concerned
with measurements on a single elementary particle, the inexactness
is introduccd by the statistisal character of the light quanta striking
the particle during and thvough the very act of measuring. 1o both
cases we are faced with the indeterministic nature of the ]_Jroblem as
SO0 4% Woe inquiqed;nére closely into the conerete conditions of the

act of measuring\"

N
\V

N L N 23
~¥\EISENBERG’S UNCERTAINTY PRINCIPLE
+ S

Quahtum mechanics is considered today to b; a pur;ly slatlspcal
thedry. Its axioms are expressed in 1erms of differcntial equatmns
Sophecting the probabilities for the values of cp-ordmzt;te;_l?:ins
velocities at a given moment with the corresponding prooablt &
at another moment. Some physicists stﬂl_tr}f to interpret these e;:_[ua}
tions in a deterministic way and to ‘derive them from cotgcep 8 0!
classical mechanics o which they are doubtlessly relal_eg oy ‘ma‘ll?r
formal apalogies. Possibly these attempts will mect "]‘?113 a sn:‘il; ar
fate as did analogous attempts in the case of Maxwell’s 1ec‘lrl11athese
of electrodynamics. For many years, One tried to expial

equations mechanically, by the introduction of concealed masses and
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in the sense of probability statements of the type of the Laws
of Large Numbers, i.e.: ‘If n is a large number, it is almost certain
that . . .*. Consideration of the values of # involved, {the number of
maolecules, etc.}, shows that under normal conditions these proba-
bilities are so close to unity that the probable predictions become in
fact cerlain. As explained above, at this stage of development, the
usual assumption was that the atomic processes themselves, namely
the motions of single molecules, are governed by the exact lawgef
deterministic mechanics. This point of view which is incompatible
with our concept of probability has been retained by some phyicists
until quite recently. O

The rise of quanitum mechanics has freed us fropwihns dualism
which prevented a logically satisfactory formulation of the funda-
mentals of physics. We know now that besides\ctassical physics,
applicable to processes on a large scale, thef¢™Ms a microphysics,
namely the theory of quanta or wave mgeliahics; the differential
equations of microphysics, however, f:l%l}" connect probability
distributions. Therefore, the statemehfs)made by this theory with
respect to the elementary particles haye the character of probability
propositions. In the %Hédggf WRERES € et measurements’ with-
out variance are possible only unger the same restrictions as hold for
ordinary bodies: only if we degide to record just those digits that do
not change from one measurément to another. The order of magni-
tude of the unit, which{in atomic physics is about 1012 mum, is of
practical but not of Q‘dsic importance.

I have confined myself to questions regarding inorganic mattet
and have avoided*all attempts to carry the investigations into the
field of bioJegy/ By this voluntary restriction, I do not intend to
indicate that'T consider an extension of our theory in this direction
to be impossible or impermissible. 1 think, however, that the so-calied
biolwga"l processes are still much more complicated than those
formung the subject of physics and chemistry, and that considerable

. additions have to be made to the physical theories before biological

Jstatements of a basic nature can be attempted.

FINAL CONSIDERATIONG

Let us make a final brief survey of the course which we have
followed in these chapters. We began by investigating the meaning
of the word ‘probability’ in everyday language and by trying to re-
strict this meaning in an appropriate way. We found an adequate
basis for the definitions and axioms of an exact scientific theory of
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probability in a well-known class of phenomena: games of dice and
similar processes, The notions of the collective, of the limiting value
of relative frequency, and of randomness became the starting-point
of the new theory of probability. The four fundamental operations,
selection, mixing, partition. and combination, were the tools by
means of which the theory was developed.

We stated once and for all that the purpose of the theory is only
to derive new distributions of probabilities from initial ones, We
showed that, in this sense, the theory of probability does not differ
from other natural sciences, and we thus gained a stable positiony
from which to judge the epistemologically insufficient foundatignavof
older theorics of probability, like that based on the notion ’Qf‘.g:c]u‘ed]y
likely events. We reviewed the various suggestions for ImpEevements
of my original statements. No necessity for essentig]Calterations
emerged from this discussion. The classical Laws ol arge Numbers
and the recent additions to these laws were incojporated into the
new theory. The frequency definition of probébi ity has allowed us
to interpret these laws as definite propoﬁtipn} concerning sequences
of observable phenomena. OO .

The first wide field of applications?gf’ithhbthem;raqupﬁe@@?ll_lty
which we have discussed was that wsually known as _stansucsu
This is, first of all, the study of s&quences of numbers derived from
the observation of certain repetitive events in human life. We have
seen, e.g., that Marbe’s exkhy stive statistics of L}}e sex distribution of
infants is in very good a§réement with the predictions of the theory
of probability. In othe‘x\ﬁases, such as death statistics, snicide staéis-
tics, the statistical dta could not be considered directly as collec-
tives; we found sH@wever, ways to reduce them to c_o] lectives. We saw
that methodssybased on the theory of prob;bﬂlty, _SllCh as, e.g.,
Lexis's thegty of dispersion, were useful tqo_]s ina rathnal compre-
hensive and Systematic description of repetitive events; ‘m th}s lseg:lse:
the methdds provide us with what is usually called 2n expléﬂ%m“f
of the ‘phenomena. The theory of etrors, which is the statlstlcsdo
Physical measurements, has served as a link with a secop_cl fun. tah
méntal field of application of the calculus of probability. Wi
statistical physics. s

The problems of statistical physics ar¢ 0
lime, si%me they lead to a rcvglu)t!ionary change in our whole con%eg-
tion of the universe. We have seen how Boltzmann took the ‘ﬁ-}
daring step in formulating a law of nature in the form of 2 stzhs?:&
proposition. The initial stage was uncertain and m a way

contradictory in thatit attempted to derive the statistical behavllgur
2

f the greatest interest inour
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of systems from the deterministic laws of classical mechanics, an at-
tempt which was destined to fuil, as E. Mach maintained vigorously.
We have then followed the success of purely statistical arguments in
the explanation of certain physical phenomena. such as Brownian
motion or the scintiffations caused by radioactivity, These investiga-
tions led us in a natural way to the problem of the meuning of the
so-called law of causality and of the general rclation between deter-
minisn: and indeterminism in physics. We recognized how the pfioe
gress of physics has brought about a gradual abandonmentvof
preconceived ideas that had even been dogmaticaily formylated in
some philosophical systems. The newquantum mechanics #d Heisen-
berg’s Uncertainty Principle finally complcte the edificgofa statistical
conception of nature, showing that strictly cxact obsgyvations are no
more possible in the world of micromecchanics\Kan in that of
macromechanics. No measurements can be cared out without the
intervention of phenomena of a statistical chapacter. ’

I think that 1 may have succeeded i{ﬁ‘mnontraiing the thesis
indicated in the title and in the introddctibn to this book: Starting
from a logically clear concept of prépubility, based on experience,
using arguments whiéﬁwa‘l‘cdﬁéfﬁ%]ljgf‘%ﬁ{e?f%ﬁz istical, we can discover
fruth in wide domains of humgnninterest.
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SUMMARY OF THE SIX LECTURES IN
SIXTEEN PROPOSITIONS

1. The statements of the theory of probability cannot be under-
stood correctly if the word ‘probability” is used in the meaning of
everyday speech; they hold only for a definite, artificially limited
rational concept of probability. R

2. This rational concept of probability acquires a precise meaning
only if the collective to which it applies is defined exactly in every
case. A collective is & mass phenomenon or repetitive &vent that
satisfles certain conditions; gencrally speaking, it corsists of a
sequence of observations which can be continued jndefinitely.

3, The probability of an attribute (a result of Qbservation) within
a collective is the limiting value of the relative ffedirency with which
11115‘3 attribute recurs in the indefinitely pl‘olqngeﬂ sequence of obser-
vations. This limiting value is not affectéd by any place selection
applied to the sequence (principle of rmﬁﬂ&dﬁ%ﬁﬁi@i@lﬁ,ﬁﬁ the
impossibility of a gambling system)

Ocecasionally we deal with segiiences in which the condition of
randomness is not fulfilled; we hen call the limiting value of the
relative frequency the ‘change’ of the attribute under consideration.

4. The purpose of ;}w&ga&cu]us of probability, strictly speaking,
consists exclusively in The calculation of probability distributions in
new collectives derfyad from given distributions in certain initial
collectives. The Hafivation of new collectives can always be reduced
to the (repeatedpapplication of one or several of four simple funda-
mental opegdtions.

5. A R]:r§bﬁbili1y value, i
statistiea) ‘experiment, i.e., by m
of obsetvations. There is no a pri
{ikewise impossible to derive probability value
offier non-statistical scicnce, such as mechanics.

6. The classical ‘definition’ of probability is an attempt to reduce
the general case to the special case of equally likely events where all
the attributes within the collective have equal probabilities. This
reduction is often impossible as, €. in the case of death statistics;
in other cases it may lead to contradictions (Bertrand's paradox). At
any rate, it still remains necessary 10 give & definition of probability

for the case of uniform distributions. Without the complement of 2
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frequency definition, probability theory cannot yield results that are
applicable to real events,

7. The so-called Laws of Large Numbers contain meaningfut
statements on the course of a sequence of observations only if we use
a frequency definition ol probability. Interpreted in this way, they
make definite statements, essentially based on the condition of
randomness, concerning the arrangement of the results in the ob-
served sequence. On the basis of the classical definition, these Jags,
are purely arithmetical propositions concerning certain combihd-
torial properties of integral numbers and bear no relatioi t@ythe
actual evolution of phenomena. O

8. The task of probability calculns in mathematieal® statistics
consists in investigating whether a given system of/statistical data
forms a collective, or whether it can be reduced taccollectives. Such
a reduction provides a condensed, systematic deseription of the statis-
tical data that we may properly consider an ‘cg;glgmation’ of these data.

8. None of the theories that seemed to‘égntradict the theory of
probability (such as Marbe's theory of3yatistical stabilization, the
theory of accumulation, the law of §hics) has been confirmed by
observations. www,dbraulil?r&;'y.01‘g.in

10. The concepr of likelihopd\introduced by R. A. Fisher, and
the methods of testing derivedivom it do not, il they are correctly
applied and interpreted, fall olitside of the domain of the theory of
probability based on thefrequency concept.

11. The theory of grrers, which lies on the borderling between
general and physic;ﬁ\%tistics, is based on the assumption that each
physical measurgfadnt is an element in a collective whose mean value
is the so-calledCérue’ value of the measured quantity. Additional
assumptionspencerning this colicctive lead to the various proposi-
tions okihs‘lheory of errors.

12, Stalistical propositions in physics differ fundamentally from
detegministic laws: they predict only what is to be expected in the
operwhelming majority of cases for a sufficiently long sequence of
doservations of the same phenomenon (or of the same group of
Phenomena). As a rule, however, the relative frequency of this most
probable result is so close to unity that no practical difference exists
between the statistical proposition and the corresponding determin-
istic one.

13. Successive observations on the evolution in time of a physical
system do not directly form a collective. They can, nevertheless, be
dealt with satisfactorily within the framework of the rational theory
of probability (probability after-effects, Markoff chains).
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14. The assumption that a statistical theory in macrophysics is
compatible with & deterministic theory in microphysics is contrary to
the conception of probability expressed in these lectures.

15. Modern quantum mechanics or wave mechanics appears to be
a purely statistical theory; its fundamental equations state relations
between probability distributions. The Uncertainty Principle de-
rived in quantam mechanics implies that measurements in micro-
physics, like those in macrophysics, are elements of a collective; In | £\
either case, a vanishing variance of a measurement is merely the
consequence of the choice of a sufficiently large unit of measurement, )y

16, The point of view that statistical theories are merely tempa{"”afy -
explanations, in contrast to the final deterministic ones which\alone
satisty our desire for causality, is nothing but & prejudic,e;‘“Suéh an
opinion can be explaincd historically, but it is bouQc'i,,ﬁQ%iisappeal‘
with increased understanding. \

223



-

NGTES AND ADDENDA

AUTO-BIBLIOGRAPHICAL NOTE

A brief popular presentation of the main ideas of this book cun be foufnd
in the first part of my article ‘Marbe’s Gleichférmigkeit in der Welt und
die Wahrschcinlichkcitsrechung’, Diz Naturwissenschaften (3, .§13ringsr,
Berlin} Vol, 7, 1919 No. 11, Pp- 168-175; No. 12, pp. 186-1927 No. 13,
PPp- 205-209. A mathematical foundation of the theory wasNigst given in
my article ‘Grundlagen der Wahrscheiniichkeitsrechp@t}g‘, Mathemar,
Zeitseh. (], Springer, Berlin) Vol. 5 (1919}, pp. 5299\ X review of the
theory in French can be found in dnnales de I'listicht Henri Poincaré,
Paris, Vol. T, 1932, pp. 137-150 (Conferenccs\held at the Institute in
November, 1931). A complete textbook of the#hory is Vorlesimgen ans
dem Gebiete der angewandten Mathematik, B&I, Wahrscheiniichkeitsrech-
nung und hre Anwendung in der Statisils }’-’k’?zkfrrhem'fe wnd i der theor-
etischen Physik, 1931 (F, Denggke, Wisn W Leipig, Reprint, M. Rosen-
berg, NCWJYork, 1945:,\, gl%‘%ﬁgggléﬁe: Tgﬁtkgﬁbli%atiog: Muathematical
Theory of Probability and Statistics®Marvard University, Graduate Scho_ol
of Engineering. Special Publ. New1, 1946, mimeogr. 320 pp. A brief dis-
cussion in English of the basic ideas can be found in the article ‘On the
foundations of probability dnd'statistics’, Ann. Merh. Staz., Vol. 12 (194D,
pp. 191-205, in Ttalian, i the paper: ‘Suf concetta di probabilitd fondato
sul limito di frequenzéelative’, Giorn. Isr, Tral. Attuari, Vol. 7 (1936), pp.
235-255, and in Fréuch in the lecture, ‘Sur les fondéments du caleul des
probabilitics’, .Tb\'e’m’fc des probabilitds, Exposés sur ses fondémeits et 5oy
applications, Pawis, Gauthier Villars, 1952, pp. 17-29, )

The subjeé?}df this book, cspecially of its last part, is also discussed_ in
the follwf;ﬁg conferences: ‘Uber die gegenwirtige Krise der Mechanik/,
Zeit fCAhgewandte Mathem. wund Meckan.,, Vol, T, 1921, pp. 425-431,
‘UberKausale und statistische Gesctzmissi gkeit in der Physik", Die Natir-
witsehschafren, Vol, 18, 1930, PP. 145-153, and Frkenntnis (Annalen d.

\P}ﬂfﬂmpka), Vol. 1, 1930, pp. 189210, and ‘Uber das naturwissenschaft-

fiche Weltbild der Gegenwart’, Rede beim Stifiungsfest der Berliner
Universitit, Berlin 1930 (reprinted in Die Naturwissenschaften, Yol. 18,
1930, pp. 885-893).

The article by Harald Cramér, ‘Richard von Mises® work in probability
and statistics’, Ann. Math. Stat., Vol. 24 {1953}, pp. 657.-662, contains 2
complete bibliography of von Mises” contributions to these subjects.
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FIRST LECTURE

FirsT LECTURE. DEFINITION OF PROBABILITY

}. GEORG CHRISTOPH LICHTENBERG, Fermischte Schriften, Brster Teil, 11,
I (New edition, Gdttingen 1853, Yol, I, p. 79).

2. sacoB and wiLHELM GRimM, Deutsches Wirterbuch, Leipzig 1922,
Vol 13, p. 994.

3. ®. EISLER, Wérterbuch der philosophischen Begriffe, 3rd ed., Berlin
1510, Yol. 3, p. 1743,

4. WEBSIER'S Iniernational Dictionary, Second Ed. Unabridged, 195!,\

vol. II, p. 970. )
5. w. SOMBART, Der proletarische Sezialisrus, 10th ed., Jena 1924&7‘0].
Lp4 \

6. 1 XanT, Rritik der veinen Vernunft, Methodeniehre, 1. Haupfstﬁck,
1. Abschnitt, 2nd ed., 1787, p. 758. The later parts of mybosk do not
agree with Kant’s theory of definitions outlined in the section quoted here.

7. The best information concerning the concept of \York in rr_wchamcs
and the general problem of the formation of concepts\inn exact science can
be found In r. mAcH, Die Mechanik in flxrerg@sfwickc’m;g, h'."smnsck-
kritisch dargestellr (1883), 7th ed,, Leipzig 19215 which is also suitable for
a non-matheratical reader, The same problem glg discussed even more
precisely in E. MACH, Prinzipien der Wariieletr?; E&?&WM*@EE@@H{-
wickelt (1896), 4ih ed., Leipzig 1323, L Bp- 406—_432 (A_bschmtte: Die
Sprache, Der Begriff, Der Substan§b6gfiff)- The_ point of view represented
in this book corresponds essentiallyto MACH'S 1deas. .

8. Concerning the controver3y, on the ‘true measure of force” sce, ¢.g.,
Mach, Mechanik (cit. abovgl,pp. 247 and 288. The controversy, uutmtcc%
by Leibniz, continued ﬁo\i\ 57 years and was only settled in | 743 by
D’ALFMBERT'S Traité dedynamique. _

9. GOLTHE'S articly Propylien, Yol. I, No. 1 (Wcrl‘{e, Ausg'ﬁlb*{ l_ctztlfr
Hand 12°, Vol. 381830, pp. 143-154) uses the word ‘probability’ in the
sense of ‘illusion’s In doing so, he shows a much finer sense of language
than the philosophers previously quoted. ‘Eine auf dem Theater ?a;gc_;
stellte Szafemuss nicht wahr scheinen, aber cinen Scheint von Wahrhei
vermigteia’,

100°A"A. MARKOFF says )
edition by H. Liebmann, Leipzig and Berl
aghée at all with the academician Bunjakowsk
matical theory of probability, p. 326) who says t
narratives must remain unconsidered, because it 1S N0
their truth’, . .

11, pterrE sivoN (later Marquis de) LAPLACE (17{}9—18’2?) puE;]l;S:;zd ;1;
1814 his Hssai philosophique des probabilités, which was rep babilitds
‘Introduction’ in the later editions of his Théorie analytigie des pro h“ int
(Isted. 1812, 2nd od. 1814, 3rd ed. 1820). The Essai represents 136 B/
of view of unlimited determinism and is a characteristic expression
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philosophical school of 18th century France. The £ssai was republished
in a couvenicnt form in 1921 in the series Les Mafires de la Peasée scien-
tifique, Paris, 1921,

L2, SIMECN DENIS POISSON (178 11840, published in 1837 a muthematical
textbook of the theory of probability under the title Recherches sur la
probabilité des jugements en matiére criminelle ef en matiére civile. The
subject mentioned in the title is only treated in the fifth chapter of the
book, which is ene of the most important works in the history of the
mathematical theory of probability. ~

13. A mathematical definition of the concept of limiting value may be
given in the following form: We say, that an infinite sequence ol‘p\u}*qbers
@y, dy, . . . lying between 0 and ! approaches a limiting valle I, no
matter how large k& may be, beginning with a certain number, @ydwhere ¥
depends on £) all those following have the same £ first figakes after the
decimal point. AD

14, Deutsche Sterblichkeitstafeln aus den Erfahrungea von 23 Lebens-
versicherungsgesellschaften, Berlin 1883, Short remigrks about this and
other similar tables can be found in F. cZUBER,J¥ahrscheintichkeiisrech-
nung, 3rd ed., Leipzig and Berlin 1921, Vol. 2,/p»140.

15. 5. v. keies, Die Prinzipien der Wa{rr}:shemﬁchkeir‘sredmqu, eine
logische Untersuchung (1886), econd re Tty Titbingen 1927, p. 130,

16, LAPLACE, Essai (368 HoS 'ﬁ‘j,%;%&% 21921 French edition.

17, eo1ssoN’s textbook has been eited in footnole 12.

18. LAPLACE, see note 11. o3

19. souN vENN, The logic of «kanuce, London and Cambridge 1866. ‘

20. TH. FECHNER, Koliektivwasslehre, edited by A. F. Lipps, Leipzig

N\
2l. H. BRUNS, Wi r%cﬁeiulichke.r'r‘srecfrmm;gr and  Kollektivmassichre,
Leipzig and Berlin, 1906 '
22. G. HELM, ‘[Jici Wahrscheinlichkeilslehre als Theorie der Kollektiv-
begriffe’, Annaign{der Natwrphilos., Vol. 1, 1902, pp. 364-381.
O
:"\.Q¢

1 AN .
SECOND LecTURE: Tue ELEMENTS OF THE THEORY OF PROBABILITY

L) In the article of E. czusEr in En: vklop. der mathem. Wissensch., Vol.
\J{2nd part), p. 736, we read about the subjectivists: ‘According to the
Hrst principle (i.e., that of insufficient reason) the statement of equal
likelihood is founded on the absolute lack of knowledge concerning the
conditions of existence or realization of the single cascs. . . .’

2, A rcader acquainted with mathematics will nete that the probability
density of an attribute js the derivative of the probability with respect to
the varjables determining the atiribute. Let us denote by x the possible
numerical values of a physical magnitude which we are going to measure,
and by w(x) the probability density; w(x)dx is then the probabitity of the
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experimental value falling into the interval x to x + dx, The density
function must fulfil the condition

fx wix)dx -2 L

»—

3. The mixing rule for continuous distributions can be formulated as
follows: The probability of a magnitude with a probability density
function w{x) falling into the interval between x = a and x = & equals

b N
w(x)dx. ¢ A\
i 7N\ ~
N\

4, TH, BaYrs's famous memoeir was first publishcd byR. Prigé after the
author’s death, under the title ‘An essay towards solving a probleni in the
doctrine of chances®, London, Philos, Trans. 53 (1763), pEn376-398 and
54 (1764), pp. 298-310. A new cdition was published QyW. E. DEMING,
Facsimiles of twe papers by Bayes, Washington (1940),the Department of
Agriculture, K7

5. Qur knowledge of this problem Is due ‘to}tﬁé preservation of the
letters exchanged by FERMAT and PASCAL. Theyar'e reported, together with
many other historical facts of the pre-Laph A4 QenGA T I yoRUNTER,
A khistory of the mathematical theor) of probability, From the time of
Pascal to that of Laplace, reprint, NewaYork, G. E. Stechert, 1931.

Trmp LECTURE: CRITICAD DISCUSSION OF THE FOUNDATIONS OF
\\ PROBABILITY

of interest to consider the mathematical
Lect. I: “In the doctrine of
f any particular form of an
f ways in which that event
h the event might occur

1. In reference to,this it may be
part (3) of wEBSPERY definition {see note 4,
chance, the likelibdod of the occurrence O
event, estimated/as the ratio of the number o
might occuhe the whole number of ways in whic
in any form (all such elementary forms being assumed as equally probable);
the limif of the ratio of the frequency of that form of the event to the entire
frequency of the event in all forms as the number of trials is increased
‘mdéﬁniteiy. Thus, as an unweighted die thrown up may fall equally well
with any of its six faces up, there are 6 ways of happening; the ace can

turn up in only 1 way; the chance of the ace is 1 out of 6 (1f6)." We have
here, at first, a rather awkward formulation of Lapiace’s definition; this
ch, however, 18 not

is followed by a kind of frequency definition whi 8 not
clearly distinguished from the former since by means of the word ‘thus
Webster returns to the unbiased die and the equally llkel_y ¢ases.

2. MENRI POINCARE, Calcul des probabilités, 1. ¢d., Paris 1912, p. 24 A
review of the literature on the foundations of the theory of probablllty (up
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to about 1916) is given by E. ¢zUBER in his book, Die philosophischen
Grandlagen der Wahrscheinlichkeitsrechmmg, Leipzig and Berlin 1923, For
the early history of the theory see also 7. TopHUNTER (cit. note 5, Lect. II).

3. JACOB BERNOULLY, Ars conjectandi, Basel 1713, e.g., p. 6, propositio
IE: ‘si @, b vel ¢ expectem, quorum unumquodque pari facilitate mihi
obtingere possit, expectatione mea aestimanda est (@ + 5 -+ ¢}/3”

4. a, MEINONG, Uber Méglichkeit und Wahrscheinlichkeit, Beitrdge zur
Gegenstands—und Erkenninistheoric, Leipzig 1915.

3, In LAPLACE'S Théorie analytique (note 11, Lect, T), the title of Chy®
{Isted., pp. 402-407), is as follows: ‘De Yinfluence des inégalités incognues
qui peuvent exister entre des chances que l'on suppose parfailement
égales.’” There he says: *. . . (I 4 «){2 soit la possibilité d’agrenerpile

. .73 we sce that he uses the word “possibilité’ in place of *probabilité’,
because the original definition of ‘probabilité’ is no lopgar suitable.
Further on in the text, however, the rules derived prev\im]sl_\j for ‘proba-
bilité' are applied without scruple to ‘possibilité’. N\

6. The principal scientific centre for the study of parapsychology in the
United States is probably the PuarapsychologichlLaboratory at Duke
University, N.C, whose findings are publis edin the Jowrnai of Para-
psychology, founded in 1937. It is interd{ing to us that by means of
ceriain statistical experimenisl sFaan By thpe of card calling experi-
ment is prominent, the existence of sexcalled extra-scnsorial perception,
ESP, is investigated with the claim thif positive resuits have been obtained.
In a lecture at the AAAS mecting ¢Dec. 30, 1945, New York City), von
Mises attempted to show that s& far this aim has hardly been reached and
pointed out certain ways toodify the setup of experiments and observa-
tions in order to o‘otain'mthﬁc decisive results,

7. 1. M. KEYNES, Tréatise'on probability, London 1921, As u characteristic
representative of thesubjectivists, we may consider C. STUMEF, “(Tber den
Begriff der mathematischen Wahrscheinlichkeit’, Sirz.-Berichte der Bayr.
Ak. d. Wiss., phidos.-hist. Klasse 1892, p. 41. We find here the following
detailed refépehte to the part played by lack of knowledge: ‘Gleich
miglichysingd Fille, in bezug auf welche wir uns in gleicher Unwissenheit
befindgn\\Und da die Unwissenheit nur dann ihrem Mass nach gleich-
gesetzt werden kann, wenn wir absolut nichts dartber wissen, welcher von
denunterscheidenden Fillen eintreten wird, so kiinnen wir noch bestimm-

“ter-dicse Erklarung daflir einsetzen.”

8. Bertrand’s Paradox is discussed in most of the textbooks on proba-
bility. See, for instance, 5. v. USPENSKY, Iniroduction to mathematical
probability, New York and London 1937, p. 251, where the solution of
this apparent paradox is given in our sense, or my textbook (eit. auto-
bibliogr. note), pp. 78-83.

9: For BUFFON's own discussion see Histoire de I’ Acadénie des Seiences,
};f;;lss 1733, pp. 4345, also his book Essai darithmétique morale, Paris

10. In speaking of the ‘older generation®, T have in mind especially a
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group of lalian mathematicians who in several papers which appeared in
1916-17 (i.e., before the publication of my investigations) claimed to have
proved the ‘inadmissibility” of the assumption of limiting values of refative
frequencies. See, for instance, F. P. CANTELLI, Annal. de I'Iustitut Henri
Poincaré, Vol. 5, 1935, pp. 1-50. What is actually proved in this paper is
the contradiction which arises if one assumes the existence of the limiting
value of relative frequencies while using the term probability in calcula-
tions and applications without postulating its identity with limiting
frequency. In answer, see: R. de Misés, Sul concetto di probabilita fondato
sul limite di frequenze relative, Giorn. dell Istituto Iral. degli Atruari 1936,
pp. 235-255.

7 3 ‘5
11, FRECHET et HALBWACHS, Le calcul des probabilités & la portée de 1ads,

Puris 1924, « \
12. 3. L. COOLIDGE, An introduction to mathematical probabilityg QGgford
1923, ,

13, HARALD CRAMER, Mathematical methods of siafisrics?,Stockholm
1945 and Princeton 1946. See in particular p. 150f. \

14, HANS BLUME, Zur axiomafischen Grundlegang déx™Wahrscheinlich-
keirsrechnung, 1934 (Dissert. Munster). Also two {papers in Zeitsch. f.
Physik, Vol. 92 {(1934), pp. 232-252, and Vol. 94 Q\‘)BS), pp. 192-203.

15. 5. KOLMOGOROFF's crilicism appearcd iwZentralblalt [ Mathem.,
Vol. 10 {1935), p- 172. ‘\A{\\!w.dbraullb]tal'y_ol“g.ll'l

16. Subsequent to the author’s last revision of this text, A, H. COPELAND
published the following paper on this subject: A finite frequency theory of
probability. Studies in Math. and Mech. Prescated to Richard von Mises,
New York, 1954,

17. THFODOR FECHNER, see nbte 20, Lect. 1. _ _

18. ¢aRL G, HEMPEL, .‘leﬁnrmls’ (Annalen der Philosophie), Vol. 5
(1935), pp. 228-260. N o .

19. This objection f8rins the main content of the criticism of CANTELLI
and other Jtalians ¥eférred to in note 10, this Lect.

20. a, H. coPELAND, Independent event l;jstoijles, f;:. J. ;"{ ﬁ?‘i‘lfé\; f)if
(1929), pp. 612~618; The theory of probability from the boi _
admissiglf:: whinbers, Ann. of M;:Iﬂt. Stat., 3 (1932), pp- 143-156; Ad}?“sss';
ible nunjbess in the theory of geometrical probability, Am. J. of Math.,
{1931),.pp. 153-162. o

A2N\R! v, wises, Uber Zahlenfolgen die ein
zeigen, Marh. Ann., Vol 108 (1933), rp-
Bernoulli-sequences cf, also H. REICHENBACE,
Leiden 1935, Engl. ed., The rheory of probability, Berkeley an
1645,

22. ®. pOReE, Bine Axiomatisierung
lichkeitstheorie, Jahresh. d. deutschen
(1934), pp. 39-47. Also, by the same author, Ma

, 232-258 and 40 (1935), pp. 161-193. i
Ppn A H C‘:}PELAN'E), beg.id%l; the papers indicated in note 20 above, see
229

kollektiv-ihnliches Verhalten
757-772. On the subiject of
Wahrschefnlfchkeirs!ehre,
d Los Angeles

der von Misesschen Wahrschein-

Adathematiker-Verebtgig, 43
them. Zeitsch., 32 (1930),

N
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also, Point set theory applied to the random selection of the digits of an
admissible number, Amer. J. of Mathem., 58 (1936), pp. 181-192.

24, A. waLn, Uber die Wiederspruchsfreiheit des Kollcktivbegriffes,
Ergebnisse eines mathem. Kolloquiums, Wien No, 8, pp. 38-72.

25, w. ¥ELLer, Uber die Exislenz sogenannter Kollektive, Fundaimenie
Mathematicee, 32 (1939), pp. 87-96.

26. ED. v. HARTMANY, Philosophie des Unbewussten, |1th ed., Leipzig
1904, Vol. 1, pp. 3647,

27. ). M. KEYNTS, Treatise on Probability, London 1921. N\
28. HAROLD JEFFREYS, Scientific Inference, Cambridge 1931; esp., ph.
8-35. W

29. G. péLvs, Heurlstic reasoning and the theory of probabilipydeser.
Matlhem. Monthly, 48 (1541), pPp- 450-4635, Morc recent works :Dy The same
author on this subject are: On patterns of plausible infershicd; Courant
Amniversary Volume, 1948, pp. 277-288. Preliminary reméagks on a logic
of plausible inference, Dialectica, Vol. 3 (1949), pp. 28—’35. On plausible
reasoning, Proc. Intern. Congr. of Math., 1950, YOLY1, pp. 739-T47.
Mathematics and Plausible Reasoning, Vols. T and,Q\ Princcton University
Press 1954; note esp. Chs. XIV and XV,

30. R. carNAP, Logical foundations of probabl?ny, University of Chicago
Press, Vol. 1, 1950. rw.dbraulibrar :‘m" in

31. €. G. HEMPEL and %t“O%’PENHElM, A}gﬁniﬁbn of *‘degree of confirma-
tion’, Philosophy of Science, 12 (1945,):,"1}1). 98-115.

32. In a paper, ‘Uber dic J. y"WNeumann’sche Theoric der Spielc’,
Marhem, Nachrichien, 9 (1953),"woh Mises comments: ‘In the detailed
presentation given in the book ef v. Neumann and Morgenstern (Theory
of games and economic behashuzlr, Princeton 1944) where every arithmetic
or geometric concept i (émfiyzed down 1o its last element, the words
“probability” and “expetted value” are used without any definition.’

33. A, KOLMOGOROEE Grundbegriffe der Wahrscheinlichkeitsrechnung,
Ergrebnisse der Mathémuatik und ikrer Grenzgebicte, Vol. 2, No. 3, Berlin
1933, Engl. tljaq's,l.' Foundations of the Theory of Probability, New York
1950, e

34, 1 E{snme ten lines of the text were replaced by the edilor by other
materiad taken from the author's writings which, in her opinion, render
mog‘e\'cl’early v. Mises® point of view in his last years, see particularly:
SuNes fondéments du calenl des proebabilités, . ., cit. in auto-bibliogr. nole.

35. Review by posTSCH, Jahresher. d. deutsch. Mathem. Verein., Vol, 45
(1935}, p. 153,

36. From E. TORNIER'S writings we may cite here; Wahrscheinlichkeits-
rechnung und Zahlentheoric, Jowrnal [ die reine und angewandte Matiem.,
Ba. 160 (1929), pp. 177-198: Die Axiome der Wahrscheinlichkeitsrech-
nung, Acta Mathematica, 60 {1939), Pp. 239-280; Wealrscheinlichkeits-
vechnung und Integrationstheorie, Leipzig 1936; Theorie der Versuchs-
vorschriften der Wahrsche:‘n!ichke:‘rsrechnung, by ERHARD TORNIER arnd HANS
DOMIZLAFF, Stuttgart 1952,

230



FOURTH LECTURE

37. 1 L. poon, Note on probability, Arnals of Mathematics, 37 (1936),
pp. 363-367.

Fourtit LECTURE: TuE Laws OF LARGE NUMBERS

t. The cssential content of this lecture, up to about p. 112, was first
published by the author in Die Naturwissenschaften, Vol. 15 (1927), pp.
479-502.

2. poissoN, see note 12, Leet, T, The guotation from Poissen’s intro-
duction is translated from p. 7 of the original.

3. JACOB BERNOULLI, Ars conjectandi, Basel 1713. The law in question
is found in Part IV, Ch. 5, p. 236. LM

4. P. L. TSCHEBYSCHEFF's general proposition was fitst published in(1867
in Russian; it appeared later in Jour. de Liouwille, sér. 11, Vol. :12'{186?).
The derivation is elementary throughout, o\

5. The deits ex machina is troduced quite openly, e.g4 By H. WEYL,
Philosophic der Mathematik und Naturwissenschaff\ Handbuch der
Philosophie, Munich and Berlin 1927, p. 151, \ .

6. Mathematica! problems of a similar type a.rg,di}'cussed by &. POLYA
and G. sZeGOE, Aufraben und Lehrsdtze aus def:\dnalyqis, Vol. I, Berlin
1925, pp. 72 and 238. The structure of the ta‘lgplé\gf;l ogarithms ‘(refc_rre‘d to
on p. 111) is also explained in this book, Furifier exdli Eﬂ%'%&ma‘
tions of other sequences of numbers peftment to this problem can be
Tound in my paper: Uber Zahlenrcihquf@ie cin kollcktivihnliches Verhalten
zeigen, see auto-bibliogr. note. &N ILItd

7. BAYESS original paper wasquoted above, see note 4, Lect. LIt foc&:
not contain ‘Bayes’s Theorgm as such; the name is justified by the fac
that the problem was suggested by Bayeg's. The solution as well as thename
are due to Laplace. a\ von b

8. This stronger formyof the Law of Large Numbers was ﬁl:st F;E?ﬂog
F. P. CANTELLE ([947)¢ St was found independently by G. POLYA In P,
this subject sce alko} A. KHINTCHINE, Uber einen Satz der Wahrschein llcn-
keitsrechnung, Edndamenta Mathematica, 6 (1929), pp. 9-20. The expg as
ation given\by' us follows the line indicated by A. KOLMOGOR(;FZIE_HS
Geselz des.iterierten Logarithmus, Mathem. Ann., 101 (1929)’ pp- vabilic .
See alsd the presentation in WM. FELLER, An introduction o propabitily

p : 1450.
thegkyand its applications, Vol. 1, New York and London 152U, | :
'\ ™ A ; _ bers was first indfcated in

9) This extension of the Law of Large ot noral concept of statis-

my *Vorlesungen', cit. above, pp. 192-197. Th e Be . : -
tical functions was first introduced in the gl:tlrc!e Deux mjm;i;ﬁf;h;gs
rémes de limite dans le calcul des probabilites’, J?ezc:l. ddc’ 'vf; fion is given
Sciences d*Istanbul, Vol. 1 (1933), pp- 61-80. A detailed dert

o " it ktionen’, Monats-
in *Die Gesetze der grossen Zahlen fir statistische I;L_u1128. See als0: R, V.

hefte fiir Matkem. u. Physik, Vol. 43 (1936), pp. 10 - i
Misﬁs,fon tha asymptoticydigtributjon of differentiable statistical functions,
Arnals of Mathem. Statistics, 18 (1947), pp- 309-348.

\
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FIFTH LECTURE: APPLICATIONS IN STATISTICS AND THE TaEORY
OF ERRORS

I. KARL MARBE, Die Gleichformigkeit in der Weh, Uniersuchungen zur
Philosophie und positiven Wissenschafr, Munich 1916, and by the same
author, Mathematische Bemerkungen zu meinem Buch * Die Gleichfdrmig-
kelt in der Welf’, ibid. 1916, The quotation is from Vol. 1, p- 375.

2. KARL MARBE, Grundfragen der angewandien  Wahrscheinlichieits-
rechmmg und theoretischen Statistik, Munich and Berlin, 1934, 1 have
published a review of this book in Die Naturwissenschaften, Vol. 22 (1934),
Pp. 741-743. O\

3. Compare my article (cited in the auto-bibliogr. note) in Lfg Natur-
wissenschaften, 1919, and the mathematical investigation ofythe’problem
in “Zur Theorie der Iterationen’, Zeitsch. f. angew. Muatiiem, . Mechoin., Vol
1 (1921}, pp. 298-307. Tt is shown therc that the probability of the occur-
rence of x runs of length m in n single observations feltvo attributes) is
given by the formula ’

pT e \
p= CERE N

4

s &
. \
&

where @ = n x 201, T\
4. 0. STERZINGER, Zitr \-?;gdi ngr[ %?g%js’;fﬁi.lsgphie der Walrscheinlich-
keitslehre, Leipzig 1911. N\
5. PAUL KAMMERER. Das Gesel:Nder Serie, eine Lehre von den Wieder-
holungen im Lebens—und im Weligeschehen, Stuttgart and Berlin 1919.
6. F. EGGENBERGER and GaPOLya, ‘Uber die Statistik verketteter Vor-
gange’, Zeitsch, f. angew. "{v@rhem. #. Mechan., Vol 3 (1923), pp. 279-28%.
7. w. LERIS, Zir Thedpis der Massenerscheinungen in der menschlichen
Gesellschaft, FreiburgivB. 1877. A description of this theory is given in
many fextbooks om*probability calculus, e.g., in the well-known book of
H. L. RIETZ, Madieptatical Statistics, Chicago 1927.
8. The figureSydre from Qesterreichische Statistik, Vol. 88 (191 1), No. 3,
pp. 20 and 420
2, Tl Ia};ébraic theorem is the so-called Schwarz inequality: If py, pa
Y the single probabititics, and p is their mean value, then:
AV A=) ol —p) (U p) = 5 p),

PN

{ ; 0. From Statistisches Jalwrbuch [iir das Dentsche Reich, Vol. 43 (1923),
£. 35.

1. . A, FISHER, ‘On the mathematical foundations of theoretical
statistics', Philos. Trans. of the Royal Society, London, A 222 (1921), p- 309,
Cf. also: “The concept of inverse probability and the use of likelihood’,
Proc. Cambridge Philos, Soc., 28 (1932, P 257.

12, Cf, e.g., 0. HFiMER and p. OPPENHEIM, A syntactical definition of
probzabiéigy and degree of confirmation, J, of Symbolic Logic, 10 (1945},
pp. 25-60, '
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13. This exumple is taken from p. R. RIDER, Small sample theory, Awn.
of Mathem. 11, 31 (1930), p. 577

14, . QUETELET, Physique sociale on essai sur le développement des
facnftés de I homme, Brussels, Paris, St. Petersburg, 1869.

i5. For an English trapslation of Mendel’s work se¢: G. MENDEL,
Experiments on Plant Hybridizarion, Harvard U.P,, Cambridge 1946. For
the numerical examples see E. CZUBER, Statistische Forschungsmethoden,
Vienna 1921, p. 184,

16. On the application of statistics to technology see: T. ¢. TRy, Proba-
bility and its engineering uses, New York 1928: A. HaLD, Staiistical theory
with engineering applications,
with the statistical problems of telephone communications. Regarding
quality control, see W. A. SHEWHART, FEconomic control of qualippNaf
manufactured product, New York 1931, and, by the suwme authot,'Sraris-
tical method from the viewpoint of quality conirol, The Gradu;ttc'Schqol
Dep’t. of Agriculture, Washington, D.C. 1939, Also the cgmprehenswe
work of £. L. GRANT, Statistical quality conirel, New York/2952. o

17. Problems of this type, taken from various fieltis\of" applications,
have met with considerable interest in recent years, they are grouped under
the name of Operational Research or Operations{ Research. Sce, €.8.,
M.LT. Course on Operational Research, TecknOlogy Press 1952; MORSE
and xiMeaLl, Methods of Operational Rmﬂbﬂ&mb“&"‘f)ﬁw S
Research Soc. of America, 1953. A very imfercsting idea has foun wide
application in the field of operations regeareh and also to a certain extent
in problems of pure mathematics, feh so-called Monte Carlo method.
‘Random numbers’ are uscd in drder to create an artificial world of
cxperience attempting to findeAapproximate answers to given prc;lblems
through statistical experimetits ions. This is made practlcal?le by the ;ﬁe
of large scale computing ‘wichines. See, &.g., D- M. MCCRACKEN, 11C
Monte Carlo MethodNSelentific Am., May 119‘5;;1 P 195?5? R’p;s “;;Ta

iy 1 ; B ; jons, J. CY, : '
Numerical Solutioy gfp Pifferential Eguari l’f)e{remfal and difference

C: JOHN R, CURTISSNSGmpling Methods applied to d 1iav
equations, Repoftyol the};\Iovembcr 1945 Seminar on Smentgic Computa-
a symposiura held June

tion, LB.MyGobp.: ‘Monte Caro Method’, Proc. of a Sy ,

29, 30, and 'l'yp]’ 1949 in Los Angeles, Cal, prmted in Nat'l. Bureau of

Standards, Appl. Math. Series 12 (1951). ivtisch-
18¢ "i’h’is éjéduction is to be found in E. ELEULE:R* Da;; al]‘ir::?;;}lt

uhiclisziplinierte Denken in der Medizin und seine Uberwinding, ‘mt- f view

ppY132-145, which is on the whole a brilliant book. T;le point 0

of the mathematician ©. POLYA is given ibid., PP- 145%1;} in G, U, YULE,
19. Statistical measures in current use arc descriped 1 L. L ?

iorics, Twelfth ed.,
;i ion fo the theory of Statistics, | |
o o gnsult F. ZIZEk, Die statis-

London 1940. A non-mathematician may © E. :
tischen Mittelwerte, Leipzig 1908, Engl. transl., Sratistical averages, New
York 1913.

20, For GINI's ‘measure o

i del R.

f disparity” se¢ his discussion in Arf
233

New York 1952, which deals, among others,‘
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Institute Ven, di scienze, lettere ed arti, 1, 73, 11, pp. 1203-1248, and the
discussion by L. v. BORTKIEWICZ in X[ X® Session de I'Institut International
de Statistique, Tokio 1930, The Hague 1930, Vol. IT, pp. | -108,

21, Pearson’s types of distributions are described, e.g., by w. paLN
ELDERTON in Freguency curves and correlation, London 1938,

22. H. BRUNS, Walrscheinfickkeitsrechnuny wnd Kollek tivmasslehre,
Leipzig and Berlin 1906; ¢. v. L. CHARLIER, Vorfesungen iber die Grundzige
der mathematischen Statistik, Lund 1920. The rational method of descrip-
tion mentioned in the text consists in expanding the distribution function
into an infinite sequence whose coeflicients are the ‘characteristic numbers:,
Bruns’s development is based on Gauss’s e=* function, Charlicrs’ pu Pois-
son’s function a®¢~¥/x!. The subscquent terms are the differcatial 'qu(?tieuts
of the first one or the difference quotients respectively. The mathematical
theory of Bruns’s sequence has been given in my paper inVahresber. d.
deutsch. Mathem. Verein., Vol, 21 (1912, pp- 9-20; that of Charlier’s
sequence in H. POLLACZEK-GEIRINGER’s paper in Skandiatsk Aktuarietid-
skrift, 1928, pp. 98111, Cf. also the latter's article¥Dic¢ Statistik seltener
Ereignisse’ in Die Narurwissenschafren, Vol. 16 (1928), pp. 815-820.

23. c. F. gauss’s fundamental papers (18213&}}61 1826) have been pub-
lished in German by A, Borsch and P. Simof, Berlin 1887 under the title
Abhandlungen zur Methode dey kleinsten \Quailrate.

24. LAPLACE'S theoreth” 33 ?3Hc§’fﬁ%g§' "Hrigraph, is one of the fore-
most subjects of mathematical invegfigations in the field of statistics and
theory of probability. Cl. my artielé ‘Fundamentalsitze der Wahrschein-
lichkeitsrechnung’, Mathen. Zeilsch., Vol. 4 (1919), pp. 1-96. More recent
developments are described in"®. KHINTCIONE, Asympiotische Geseize der
Wakhrscheinlichkeitsrechnugey, ™ Ergebnisse der Mathematik und  ihrer
Grenzgebiete, Vol. 2, NO'-'%, Berlin 1933, In English, New York, Chelsea
Publishing Co., 1948 \See also the up-to-datc presentation by B. v.
GNEDENKO, A. N, KOLMOGOROV, Limit distributions for sums of r‘ndepm{feﬂf
randon vrm'ablei Afransl. from the Russian by K. L. Chung), Cambridge
1954, O

25. Most’8f the investigations of K. PEarsoN and his school have been
publish&iﬁ Biometrica, a journal for the study of biological problems,

foundgdn 1902. The most important work of K. PEARSON is his Grammar
of Seience, London 1900,
o N

h
SIXTH LECTURE: STATISTICAL PROBLEMS IN PHVSICS

1, BOLTZMANN's theory is presented in his Vorlesungen iiber Gastheorie,
2 vols, 2nd impression, Leipzig 1910, The main ideas are discussed in all
textbooks of theoretical physics.

2. M, v. sMoLuCHOWSKT, ‘Uber den Begriff des Zufalls und den Ursprung
der Wahrschcinlichkeitsgesetzc in der Physik’, Die Naturwissenschaften,
Vol. 6, 1921, pp. 253-263..
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3. Lapiaces demon’ is introduced in his Essai philosophique (note 11,
Leet. I

4, W. TH, BUCKLE, History of Civilization in England, 2nd cd., London
F858. Tn this beok we find information about the beginnings of statistics.

5. M. v. SMOLUCHOWSKI, see note 2, above,

&. T POINCARE, Science et méthode, éd. définitive, Paris, p. 71, Engl.
{ranst,, Science and method, New York 1908.

7. The use of the terms “million’, *billion’, etc. is not unambignous. It
Gerinan {the original language of the present book), 1,000 millions, ie.,
10% is called a nuilliard; in American English the same number is called &
billion, wheress in British English, as well as in German, a billion meang
13% or a million millions. The use of the word trillion is similatly confp\sécl.}

Our text uses ihe following terms: _ «
10% = 1,000,000 = 1 million ) N
10°2 . 108 % 108 = 1 Dillion ‘¢

1018 == 108 % 102 = 1 trillion. oo\

The nunber # of molecules in | em? at pressure pof,'one atmosphere,
temperature 7 - 273% is (Millikan} » -= 2.705 xz~&5'. This is rappmxl;1
maied in our text as 3 x 10 = 30,000 x 10%°. But'40,000 x 10 per em
equals 30,000 % 102 or 30,000 biltions per mms) =~ .

8. For an introdaction to the older atomic”fﬁ’é}.'frg,mﬂf mﬁﬁy&(}@ﬁ‘&ﬁﬂal
data, we mention 7. PERRIN, Les atomes, Parls 1914, Engl. transl. Atoms,
London 1923, N i

9, ERNST MacH, Die  Leitgedatkeh meiner naturwissenschaftlichen
Evkenmmisiehre und ihre Aufnalyné durch die Zeitgenossen, Leipzig 1919,
p. 9: see also Warmelehre, 4tifed, p. 364. .

10, The fundamental im:eé"t%ations of M. v. SMOLUCHOWSK1 are published
n Sitzungsher. der Wiem ad. d. Wiss., math.-naturw. Ki., Abt. ITa, Vol.
123 (1914), pp. 23812405, and Vol. 124 (1915), pp. 339-368.

11. The clarificatipri-of the basic problem of the c&folutlon of t .1§ Aan
similar phenomcgdyin time was given by the author n ﬂ_le.pé_llff:rﬁh UZ-
schaltung der Efsodenhypothese in der physikaiischen Statistik’, Fapsic.
Zeifsch., 2;\51“?}20), pp. 225-232 and pp. 256262

12. Regivding the important role of MARKOFE'S chains Otr’)p ysicd
statistiosastc my Porlesungen . . ., p. 16 (Clt-_amo'blbhogr' ng Lqr oz der

13" $VEDRERG's experiments are described 1n T. SVEDBERG, .{\!:IL e der
f‘{?)f;m-aze, Leipsig 1912, p. 148. Sec alsoo R, EURTH, Schwanknngsersche
urien in der Physik, Braunschweig 1920. S -

14. In this connexion, see L. v. BORTKIEWITZ, Die radieaktive Str ‘gﬁﬁﬁ

als Gegenstand Wakrschm’nﬁchkefrsthearerischer Uniersuchungen,

1913.
15. E. MARSDEN and T. BARRAT, Proc. Phys. Soc., London, Vol. 23 (1811},
. 367373, . . h

ppIG. Information about recent developments 11 the thtc Or;} tﬁi&f;c\i,hjcg

electronic theory of metals, and problems of the quantu 235
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will be discussed later in this bosk can be found in r. x. RICIIMYVER and
E. H. KENNARD, latruduction re modern physics, MNew York 1947,

17. "The fundamental investigations by m. pL.aNCx, “Theoric des Geselzos
der Energieverteilung im Normalspektrum® appeared in Verlandl. d,
Deutsch. Phys. Gesellsch., Vol. 2 1900y, pp. 237245, and in Aunal. der
Physike, Voi. 4 (1901), pp. 553-563,

18, PHILLIP FRANK, Das Kauwsalgeyerz wnd seine Grenzen (Schriften zur
wisy, Weltauff’), Vol. 6, Wicn 1932,

19. In connexion with the following discussion, compare my lecture:
“Uber die gegenwilrtige Krise in der Mechanik®, 1921, (cit. aulo~bib]ivg§
notej. There T demenstrated for the first time the incompatibilig of a
deterministic theory ‘on a small scale’ with a statistical theory ‘ph"&)ﬁrge
scale’. O

20. See my lecture, Naturwissenschaft wnd Technik  dal &Gegenwart,
Leipzig and Rerlin, 1922; also Zeitschr. dor Verein, dentsomdngen., Vol. &4
(1920), pp. 687-690 and 717-719. R4

21, This section is taken from my lecture: Uberddusule und statiztische
Geserzmdssigkeit, ete., 1930 (cit, auto-bibliogr. nokh

22, Original works: L. DE BROGLIE, lntrodutton & Pétude de fa mé-
canigie ondulatoire, Paris, 1930, (Engl. trgm'ilj*; An Introduction o the
study of wave nechanics, Longgn Ifflkt)}c)‘ WWHREISENBLRG, Die pliysikoliscien
Prinzipien der Quantentiiéifie T pA Tlgﬁig(ff}]gl. transl., The Phvsical
Principles. of the Quantum Theory, New York 1949.) b, SCIIROUINGER,
Abhandlunger zur We!!enmf?dmnf;’f'.f;l:cipzig 1927, (Engl. transl, Four
Lectures on Wave Mechanics, Lmi’@h‘n 1928.} A popular review is found in
RICHTMYER and KENNARD, seg nite 16, above.

23, HEISENBERG's Uncertai 1y Principle is interpreted in different ways
by physicists: ¢f, for instafies, m. v. LAUE, Die Natur wissenschaften, Yol. 22
(1934), p. 439, and mianSwer, ibid,, p. 822,
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AcCUMULATION. theory of, 141ff, 165, Cansality, 179f1, 182-4, 191, 203f;, 2071,

_2?2 2081, 220, 223
Additlon of probabiliiies, sce Mixing ~ Chance, 24, 29, 33,
Admissible numbers, 229-30 1761, 221

After eflecis, probability, 54, 144, 188iT, i Charnce mechanisms,

57, 72, 94, 1367,
2 A

17T S\

105, 1675, 72,

1921t 222_ . Chance variations,
Abmost certain, 116, 121, 123, 126, 1781F, 182, 192, 211-2 o
131- 2 i Coin tossing, 13, 14, 34, 69,410336, 188

Alternative, 34, 41, 48, 59-60, 105, 114, ! Collective, 12, 135,
150-1, 155, 161, 166, 169.-70, 187-8,
196 i 2114, 215, 221

Application, problem of, 85

Arithmetical distribution, see  fhstri-
hution ‘ 125 2%¢

Arithmetical probabilities, see Prohabifine -

Atom, theory of, 18T, 184-6, 202

Adtribule, 116, 14, 19-20, 24-5, 28-9,

18, 28,/%0-5, 64-5,

99100, 103, 117, 128,176, 170, 192,

axiom of exisicndeof limiting value,
154, 28-2,\861F, 89, 105, 110, 115,

axiom 0f~\ﬁhomness. 238, 29, B2,
N 2 ) )
der?{%‘&fgéi‘"%%' byar yakaigeln 3t,

34-7, 39.40, 43-5, 47-9, 59, 89, 117, w034, 38M, 59, 65, 164

189, 196, 221 . Objections to freq

Attribute space, 98, 99, 190, 200
Average, 130-1, 147, 149, 150, 160, 166,39
172,197, 212 -~ v

uency concept, 94ff

oy Objections o infinite sequences, 821F
A reduction to collective, 136, 1426, 165,
1874, 219, 222

Axioms, see Coflective \‘ * Collectives 4 pinable, 55-7
e combinable and noncombinabis, J2-
BaLts, 137, 170, 207; see Upts { ) dependent and independent, SOff, 54-5
Bay €5’ rule of partition, ix, &7\ operations an, s¢e Cperations
Bayezs th?\?]'erzl;l, sec Speondt Law of relation to Bermoulli sequences, 112/
arge Numbers A\ : ioth single initial collective,
Basess iype probler, @17-8, 15515, 166, "*gg fo & s
166, 170; see Infebeirce Combi;]ab!c and mnoncombinable, sec
Bernoulli-Poissoul theorem, see First law 7 copfloprives
of lnrge quinbhers example of noncombinable collectives,
Bernoulli scq%ymcs §9.90, 11267 96
non-Berdeulti sequences 111 Combination, 48(F, 60fF, 114, 117, 126,
BernoullRiype problern, 114, 117-9, 156, 139, 196
. 16y~ mltiplication of probabilities, 498, ,]93
g;e(ﬁgand’s paradox, 77 of independent collectives in classicat
th statistics, 84, 133, 1381, 151-3 theory, 6%
Browniun motion, 102, 186ff, 189, 190, © gperation of, 48

rule for dependent

194, 199, 204
rule for indepen

RBuffon's needle problem, 77

collectives, 557

dent collectives. 33, 55,

i
CAsEs ! 61-2 B
equally likely, sce Eguatly hkely cases ' Combinatoriz) probability, 1916, 193,
tavourable, 42, 44, 676, 106f, 117 | 194, 199 126, 131-2
Cuause and effect, disparity of, 180, 153 | Condensation, .
Notes.

+ References to Pages 224-216 are found in the
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Conservation of energy, 7, 26, 174

Contagious discases, 1424

Continuous distribution, see Distribution

Convergence in the sense of probability,
127

DEeaTh statistics, 9-11,
153, 155
Degeneration of gases, 199
Density
mass, 37
probability, 36-1, 43, 78, 122, 226
see Continuous distribution
Prescriplive statistics, 166-7
exccss, 167
cxpansions of Bruns and Charlier, 167,
234
Gini measue of disparity, 167
median, 166
Pearson curves, 167
quartiles, deciles, 166
skewness, 167
see Average, Dispersion, Standard devia-
tion
Determinism {(deterninistic), 1754, 134,
191, 204, 208-%, 217, 222, 225
Deviations, 146fF, 178 wiwwr.dbrau
see Chance variafions
Dice throwing, 9, 11-6, 23-4, 30-5, 72

16-8, 69, 142,

biased and unbiased die, 13, 34-5, 41,3

59, 63, 63-9, 72,
Disparity, Gini's measure of, 167
Dispersion, 1430, 148-8, 15311, 1686

expected value of, 1481f, lS...ff\
normal and nonnormal, 381 )
subnormal and superndtmal, 151—4
Distritnition, 34-5, 43504, 142, 150, 167,
1702, 187, 193,200, 212, 221
arithrmetical of\disgrete, 11-6, 35-7, 77,
125, 13841 060-1,168-9, 181,203
continuuus o seometrical, 35-7, 43,
%(T 121, 172
*130, 132

7 ™

Ny Y

frequ
mass, 3
MaArwell-Bolizmann, 193, 203
fimgst probable, 191, 193, 193, 200, 203
'"\rronuuform 35, 7! 445 59, 119, 122
\ normal, 170fF
several dimensional, 48-9, 892, 117, 131
uniform, 35, 37, 41ff, 44, 65, 68iT, 75,
F9-80, 1574, 183-5, 200, 221
Diistribution functions, %9
Division of probabilities, see Partition

Errctron theory of metats, 20061
Bose-Einstein theory, 201
classical theory, 200
Fermi hypothesis, 201

238

: Evolution of phengméma in time, 18

Energy, 7, 26, 174, 203, 214
sea First law gf thermodyanamics
Entropy, 174, 183, 185ff, 187, 19211, 198,
201, 204
see finprobability, vrder of magnitude of;
Second law of thermodynamics
Equally likely casas, 21, 42, 44, 634, 75,
1317, 227
addition rule, 42
as used by Laplace, vii, 66fF, 1060
ohjections Lo, 6711, 71, 73, 770, 80
Equally likely events, 106, 219, 221
Errors, theory of, 162, 167, 211, 219, 222
applicalions of, 172, 178 2 \N
Galton's bourd, 1694 o\
Laplace’s law, 171; see Sormal cuvee
method of least squarcaplo’, 171
true value, 168, 212,232 2

-
'

199, 222 I\
bxpected valie \(hathematical expecti-
tion), T4ENYY, 150, (56
of dispersion; 149, 152-3
of Le; s{?;e?tin, 130
Extra-{s‘é rml perception, 228
ibrafs

FInT E ctnes 828

I Eiuite populcmons 22, 83, 167

s Force, 4, 5, 143, 2061, 210
" Frequency
limiting valuc of relative frequency,
126, 21#, R, 105, FIOF 115,
124, 226, 229
relstive frequency, viif, 12--5, 63, 83, 87,
101-2, 1056, 114-5, 121, 127-30,
175, 1924
see also Churce, Probability definition,
TFuble of logarithms
Trequency distribution, see Distribution

GaLToN's board, 169, 180, 207, 208, 211

Ciambling syatems, see Kandomness

Garmes of chance, 9, 11, 16, 19, 69, 137
djtferent [rom games of skill, 136

Gas theory, see Kimetic theory of gases

Genes, 1601

Geometrical distribution, sec Distibution

Geomctrical probability, sce Probabiiity

Hieremry theory, 11, 12, 1608
Homogeneous material, 72, 80
Hypotheses, probability of, 47
Hypotheses, testing, 15541

IMprOBABILITY, order of magnilude of,
1834, 186
Independence, 50, 187



Indifference, principle of, 30, 75, 77, 80
see Sahifeciicios '

Inductive fogic, X, 96

industrinl avcd iechnological
1335, 16107, 178

Inference, 1161, 120, £23, 133, 15611, 164

Inferred probability, 1191, 122, 156

Insurance, applicalions to, 9ff, 161, 26, 34

slatbisiics,

KineTic theory of gases, 10, 12, 20, 177,
121, 1846, 19900, 204, 214

Law of serics, 141, 142, 163, 222
Laws of large numthers, 126, 132, 134,
203, 2189, 2220 seo Condensation
First law
Bernoulli-Poisson  thearem,
VRO, 105, 1235, (59
arithmetical cxplanation of, 1077
contrast to Poisson's empirical
rute, 106, 110, 115-6, 124-5,
1334
nroof of theorem, 113
sequence to which theorem does
not apply {square root table),
110-1, 115
generalizations of Bernoulli-Poisson
theorem, 114, 1257
for averare in more general col-
fectives, 114, 129

1051,

for statistical funciions. 1291T, s2éq

Lexis® ratio
strong law of large numbers L2610
contrast to Poisson’s empirigdhrale,
10460, 110, 115-6, 124§, 1314
Sceond faw X\ "
as basis of statisiics, 223, 134, 156
Baves’s theorem, LMOR1211H, 125
for statistical f!.iu’stiéns, 132MT; see

Lexis’ mﬁj{f >
geﬂﬂralizat[@g f Bayes’s theorenl,

931 164
redaffon to Bernouili-Poisson
o L) theorem, 12360
Tﬁi&’g “$quarcs, method of, see Errord,
theory of
Lexis' ralia, 133, 149
applications of laws of large numbers
to, 1456
solidarity of cases, 133
see Dispersion
Likelihood, Fisher's, 1571, 166, 222
L!.mit[ng frequency, see Chance
Limiting value of relative frequency, 56
Freguency

! Muxwell-Boltzmann  distribution,

SUBJECT INDEX

Linked events, t42ff, 192
otiery, 16, 19, 42, 68, 177, 179

Macwoscopic and  microscopic, 183,
2124, 215, 223
Markoff chains, 192, 222
Tass phenomena, vii, 10, 12, 102, 1354,
139-41, 180, 186, 209, 221
193,
203
Mean, see Average
Measurements, 167, 212ff, 2176, 220
crroms in, 167, 172
exact, 209, 213, 2135, 215 A
Mechanics, 54, 73, 82, 91, 1776, 185, 2048,
2071, 210, 2145, 217 2
centre of gravity, 76 « \
forces in Newtonian mechgmics, 206
lever, 73 A\, 3
moments of inertia, 'FJ'\; )
worlk, 4ff, 15 N
Median, 166 /
Méré, problem o, Chevalier de, S8
Mixing, 19204401, 60-2, 68, 78, 98-9,
114, 127 184, 187, 190, 196
additidn/Tule, 40-3 sistit
addik i inuous distribu-
“dc} ﬁﬁ‘:’ﬁ%ﬁﬂ%ry_org_m
,aﬁltfiiion rule in uniform arithmetic
S distribution, 41-2, 57

Y

N\ operation of, 39, 187, 193

SnIuitiplication rule, see Combination

New1oN'S mechanics, 145, 1756, 185,

204, see Force
Nihilists, §1, 97

i Normal coTve, 170

125& y o distribut
i N . e orma) distribution,
independence of initial distribution,.

i OBSERVATION

Normal curve, [aw of, 1701
combination of large gqumber of cotlec-
tives, 171-2
Laplace’s law, 171

Mormal dispersion, ¢ Dispersion
see Distribution

5, BITOIE of, lé?g’ 5 s
Qperations, fundamental, 38-38, 997
y 114, 129, 171, 219, 221, seC Cqmbma-
Hon, Mixing, Partitioy, Selection
Oscillators, 2023
P ARAPSYCHOLOGY, 74, 228
partition, 43-3, 57, 118, 120, 156
division of probabilities, 118 o
initial (a prioti} and final {a posterion ]

probability, 45, 48, 118, 136
operation of, 513{1” a6
probability of aypotheses,
mle of Bayss, 47
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Perpetual motion machines, 25-6

Phase-space, 193

Flace selcction, 24-7, 45, 50, 33, 57, ot
63, 87, 89--92, 114, 139; sce Kandom-
HEXNS

Planck's law, 203 '

Plawsibility of statements, viii, $5-7
Poisson’s empirical nide, 22, 70, 79, 86,
1045, 115-6;
colfective
Positivism, logical, 96
Probability, sec Probabilizy definition
arithrnetical and geometrical, 36, 121-2
initial (a priori) and final {a posteriori},
46, 48, 70, 118-9, 1223, 1561
Probability aftereffects, see Afrer effects

see First axfem for

: SampLE (small) theo

Probability caleulus, 8-10, 15-6, 64-5, |
102-3 :
applications, ix, 9, 123, 161, 165(T, 1741,
182, 222

45 a scicnce, 1x, 8, 30T, 100, 219

connection with reality, 63fF, 841"

object of, wii, 11, 24-6

purposc of, 31-7, 635, 219, 221

Probability detinition

classical definition of Bewgaplli, bty
lace, and Poisson, vii, 21-2, 661F.
TOH, 104, 1066, 117, 221, 227-8

definition based on finite collccnvcs a0\

42ff L
dictionary definition, 24, 227 AN
frequency delinition, 8- 13 19, 20023-9,

41T, 70, 78, 81ff, K7, 92(94 97,

109{f, 175, 215, 224
in common usape, 2-4.¢ ka"f 76, 225
subjective, 75, 940, \
see Tornier-Dooh '\

Probability density, e ensity
Probability 1 and pfbbftbthty 2, 96
Problems ”
Buffan's nchi],e problem T
Chevaligr\dg Méré's problem, 58F
waterd wing problem, 77

sce,ﬂavev s type problem, Bernoulli ype
pf"obe’em

\ghm.\arum statistics, 204, 211, 218
tanium theory, 2021f, 204, 210, 214, 21 8,
223 ’

RARIOACTIVITY, 1950
alpha particles, emission of, 195
scintillation, 193
time interval between suecessive scintil-
lations, 195-9
Random fluectnations,
arions

see Chance vari-

Randommness, 23, 39, 61, 871f, 93, 1124,
124, 1370, 188, 192-3, 195, 215
consizteney of axiom of, 924
definition, 24-5, 85
insensitivity to place sefection, 24, 27-9 ,
39, B, 912, 221
objections to axiom, 8TIT
pringiple of the impossibility of a
gambling systemn, 24-6, 8§, §33,221
restricted, 89, 83, 113
see Bernoulli sequences, Squdare rovi fable
Repartition, 201, 203
Rapetitive cvcnrs vil, 1061, 35, 105,441,3,
211, 219; see Mass phetonithay
Residence time, 1891F, 191 7\
Roulette, 16, 34, 39, 129, 131 M47
Runs, 112, 138fF, 141, 14%:'2.}2

4ad, 156, 158-9

Sumpling, correlatéd 0, 35

Scientific metifady ¥, 21, 26, 31,
BT, 97, 134

Seintillation) i

33

T4

: Sclcumm\BQ see Place seleciion

240

i Siatistical functions, 1291, 149,

Sequbicds

ibr ai?ghmiiggt«hformulas, 23, 33, &3, 92,

demcd scquences, 56 .7, 94, 147, 163,
185-9
finile sequences, 8317
intinite number of, 101
linked, 14247
random sequences, 23, 27, 107
unlimited sequences ol ohservations,
viil, 11, 15-6, 22, 50, 35, 82-5,
13716, 167, 175, 1904, 221
see Bernoulli sequences, Place selection,
Randomness
Sets, theory of, 911f, 9
measure of sets, 102
probability as a measurc of sets, 1)1-2
probabitity as a part of theory of sets,
99102, 127
Sex distribution, 1384, 152
Social statistics, 135, 160, 234
Solidarity of cases, see Lexis ratio
Square root table, 111
Stabilization, statistical, 139, 165, 222
Stabilization of relative frequency, 16,
113, 115; sea First law of large
1mbers
Standard deviation, 147
172
examples of 130-3, 145-51, 153f, 160,
166, 172, 197, 212
laws of large numbers For, 13T, 140
theoretical value of, 1311, 150



Staiisiics, 161-5, 176, 186, 200{f
definilion of, 123, 1338, 144fF
descriptive, 129, 1668
theoretical, 133, 1441F, 149, 160, 158,

204, 209, It
see Descriptive stafisiios
Subjectiviste, 30, 75/, 945, 226 -3
Suicide rates, 142

Fanit of logarithms, 1 12-3
Target, shooting at, 33, 43
Telephone exchanges, 162
Terminology, viii, 1-6, 9, 15, 46, 67, 76,
86, 93, 100, 116, 135, 235
Testing hypolheszs, 155
Testing nhystcal statements, 8401, Sl
Festing probsability statements, 84, 221
Theovy, scieatific, 4, 7, 74, 1444, 208
axioms, &5, 103
distingt from mathematical aspects, 100
limitation of scope, 4, 8, 135-6
of anplication, 83
rational concends, vii, 1, 3-7, 97
transition 1o realily, vii, viit, 7, 33T,
84T, 91, 1366T, 14311, 168, 216-7
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Thermodynamics, 76, 174, 185-6

first law, 174

second law, 174, 1853
Thermodyiamical prabability, 193
Tinte interval in radioactivity, 195
Time sequences, 141, 186, 1924, 194-5
Tornier-Doob theoty, 1012
Traffic density problems, 141, 162
Transition probabilities, 120-2
True value, sce Errors, theory af

UnceRTAINTY principle, 215fF, 220, 223
Uniform, see Distribution A ¢
Urns, drawing from, 47, 55, 146, 148.))
152-5 o\
schomes of urns, 143, 154-5, {63"’

S, Y
2
*

VARIANCE, 148, 151-2, 202,218, 223
constancy of progﬂq\ct\@h'ariances: 216

© Viennu circle, 96

A\
WINE and watitg.\mixture of, 77

| Work, 4<3nlS
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STATISTICAL THEORY
By Lancelot Hogben

Statistical theory is of importance to the plain man ag well as to the trained
mathematician. Biologists, sociologists and civil servants show an increas-
ing disposition to exploit the newest statistical devices with hittle concern
for their mathematical credentials or the formal assumptions contained
within them, '

Writing as a biologist, Professot Hogben cxamines the underlyings
assumptions of siatistical theory. He scts down, with the clarity, brilliante
and force one expects from him, the vicws of the scienlist who asel yhie
formulae of statistics. By tracing current conflicts of doctrine Ago\their
sources, he makes clear to the younger generation of research ‘workers
how important it is to examine and to question the credentials@fprinciples
invoked in the course of their work. D
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MATHEMATICS FORVTHE MILLION
By Lancdiot Hogben

Some of the chapter sub-titles; \Translating Number Language, What you
can do with Geometry, The Beginnings of Arithmetic, What we can do
with Trigonomctry, Ho\\AIgebl‘a began, Spherical triangles, What arc
graphs, How Logarithms were discovered, What the Calculus is about,
Statistics. “I've taken"time to think it over, And my deliberate opinion
1s that it is a gfedt book, a book of first-class importance, and that it
should be read i)v"every intclligent youth from 15 to 90 who is trying to gei

the hang of &hin g8 in this universe." H. G, Wells
Q

“MriHogben, worthy domocrat of science, brings maths, down from
the ftlﬁn air of mystory to a real world of cookery recipes, time-fables,

employment aggregates, fines, taxes, war debls, overtime schedulcs,
spoed himits, bowling averages, billiard scors, calories, babies’ weights,
rainfall, hours of sunshine, bank rates, discount, interest lotteries, wave-
lengths and tyre pressures. . . . Above all, this book reveals a heritage
which is our own; the wealth of human knowledge and achievement. . . .
It doesnt merely tell you about things, it helps you {in a lively, genial way}
to understand that rationally planned language which is necessary for a
rationally planned society.” The Times of Los Angeles

Demy 8vo, Third Revised Edition, Twenticth Impression, 255. net



SCIENCE FOR THE CITIZEN
By Lancelot Hogben

“This is a marvellous book, It is nothing less than an attempt to present.
the interested layman with the whole fundamental structure of science.
No such task has ever becn undertaken before; Professor Hogben has
not only tried it, but carricd it out witha cormpleteness one would not have
believed possible. He has brought off one of the most Impressive and
valuable achievements of our generation.” The Spectator ,

“Tt succeeds brilliantly. . . . A great and fascinating book—one to
rejoice the heart of cvery citizen who values civilization and enlightenmefity
London Times Literary Suppiément

“This is no ordinary book . . . The presentation of science to ,thei'ayman
has rarely becn at the same time so attractive and so compighiensive. . . .
The very fact that science is not presented as an explanatioQ&f the wonders

of the universe but as a means to practical handling of iSryday pecessities

should give a wide appeal to young and active mindsy.: . i Nature
Demy 8v0.  Fourth Revised Edition, Nim‘%@sréssfon 355, net
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SCIENCE MAKES SENSE
By Ritglite Calder

Written by Britain’s leading sCientific writer, this yrsual I_:rao?c has a wide,
popular appeal. Tt presemsﬁn lively fashion the great scientific advances
of today, from the use fs'{ftomic energy to Space travel._ But itis something
morc; it gives a frésh fhsight into the processes of scientific thought and

development. A\, N . N
It reconstitut®s Gdience as one of the humanities, relates it to religion,
e f the world today. It

literature an tts. and to the social roblems © :
o ars, o 4 about science with freshness

tells the gefitral reader what he ought to know _
and h”"%‘ﬁ‘, arfg without technic%alitics. Tt is also intended as a ffenqgs
oonmb:ution to education, providing students, who have ﬂPthhiad a zﬁ;e:t;nc
traitiing, with an appreciation of the developments which are charg 2
1 Science Mafkes Sense will give thf: reader a
ut science and help him to form judgements

7

the“nature of our society.
\proper sense of proportion abo
about its use. .
“] think that Calder has written & racy, readable '0001]; of l?xtfl‘stﬁ;d}gggy
range. He is one of the few men who could turn out a book © -

He has demonstrated again that a good ournalist }vho sgacfarliﬁsein“}i?ﬁ
popularization of science can enliven & d_]fﬁcnlt Sle_]eEJt- tlwl') o oot
a high-school education should find this book of absorbing :
WALDEMAR KAEMPFFERT, Science Editor, New York Times.

125, 6d, net
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MATHEMATICAL RECREATIONS
By Maurice Kraitchik

To most people “mathematics” is synonymous with “figuring.” But
actually, quite apart (rem preblems requiring calculation, people in all
times have enjoyed exercising their reasoning by means of games, riddles,
and puzzles—in other words, by mathematics in its most fascinating and
easily accessible form.

This book brings together a great varicty of such pastimes—the mosky
famous as well as many little known, and some now published in English
for the first time. Included in its pages are many ancient and cyfigus
problems of old French, Arabian, and Hindu origin; problems ln¥oiving
the guessing of unknown numbers; examples of Cryptarithmegicvthe use
of letters in place of figures); problems concerning the perpefiialicalendar;
many problems of probabilities as found in bridge hands,/Rilsstan Bank,
Baccara, Roulette and Dominoes, and other forms of gzgm,bs\and gambling;
including several very interesting chess problems; awerycomplele section
of Magic Squares; and some ingenious variations df*the type known as
“difficult crossings,” such as “The Fealous Husb’a@: § and “Trans porting
a Regiment.” The problems range in degree gf}}iiﬁculty from those which
could be solved by a boy Qrvg{rlciaiﬁzmm]}g;aﬁ@mtic to examples which
will offer diversion to the trained mathémalician, Mathematical Recrea-
tions, which is complete with answersymakes a urique contribution to the
field of intellectual cntertainment@nd provides keen enjoyment for all
those who welcome a chullenge t&their wits.

Demy Bun, \’ Fifth Impression 21s, net
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\}PRINCIPLES OF MATHEMATICS
. '.j\ By Bertrand Russell

7\

\I‘ts’e"_Pri‘nczp!es of Muathematicy, first published in 1903, sets forth, as far
s possible without mathematical or logic symbolism, the grounds in
favour of the view that mathematics and logic are identical, what is com-
monly calied mathematics being merely later deductions from logical
premisses. The detailed proof of this thesis was subsegquently given by
Professor Whitehead and the present author in Principia Mathematica,
in the “Principles” it is defended against such advance philosophical
opinions as were at that time current. bt has since been attacked, and in a
new Prefuce the author defends his thesis against adverse opinions.

Small Royal 8vo. Second Edition, Seventh Inpression 3355, net



THE BEQUEST OF THE GREEKS
By Tobias Dantzig

In mathematics all roads lcad to Hellus and any attempts to study the
historical development of modern mathematics must make a thorough
examination of the Greek contribution. This volume deals therefore with
the ideas and issues which agitated the Greeks from Thales to Pappus and
which have survived and are still alive to-day. Professor Danlzig envisages
Lwo later volumes: Centuries of Surge will describe the rebirth of mathe-
malics and its prodigious progress in the seventcenth and eighteenth
centuries, and The Age of Discrerion will cover developments in the Eu;ne\-
teenth century. AN
Professor Dantzig’s brilliantly organised work grew out of his experience
with Number: the Language of Science. This carlier book gainedimmediate
recognition as an exceptionally clear account of a vital/mathematical
problem and has been revised and enlarged three times, H}'&hew historical
survey exhibits the same stimulating qualities of ludigidity and thorough-
ness, ) o
*“, . . should give pleasure not only to prof¢s’§é}‘mathemat{01ans bL:t
to many others who feel the fascination qf‘\xxufnbers and diagrams.
The Times. :\{r*.dw_clbr‘aul_llibl' AR .in
“, . . lucid and penetrating study of themajor mathematica asilicve-
ments and problems of the Greeks. gyt An 11:|valuable book for the
library, one which contains numbezs of useful poinis for the teacher and

one which provides for the matematical students a most illuminating

survey of the Greek contributien.” The Times FEdicational Supplement.

Denny 8ro. O 185, nef

LA
NUMBER WHE LANGUAGE OF SCIENCE
A By Tobias Dantzig
'\..

W/

=Of Ihe.%ﬁea’test interest. The case with which the book reads for a

mathenfatician is no measure of the thought and care which have bcer:
put intd the writing., This is an excellent account for the math_emau;,a
&tkident, or the general reader mathematically disposed, who wishes for

i i tus of the subject.”
Ssome sort of philosophical conspes Tgmes Lirerary Supplement

i himself frecly to respond 1o

“Any teacher of mathematics who allows
this mgst stimulating book is thereby Jikely o be made m;re ctapztlblc of
attracting minds that might otherwise be discouraged from the cutset. . . -

Dr. Dantzig has been able to show in a most v}iltal w%y ‘n}:t1et lil:vqeégfgqent of
’ . + Ou g 3.
the most fundamental issues of mathematics throug A mectator

; s 2 ”
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MATHEMATICS IN WESTERN CULTURE
By Morris Kiine

“An alluring and forceful demonstralion . . . the first to deal with mathe-
matics 4s a cultural subject.” New York Times Book Retview.

This refreshing treatment of mathematics as a branch of our culturs
answers the question: What contributions has mathematics made to
Western life and thought apart {rom techniques that serve the enginser?
By presenting a remarkably fine account of the influence mathcmaiics
has excrted on the development of philosophy, the physical and social,

sciences, religion, lilerature, and the arts, the book amply supports (B |

contention that marhematics is a major constituent of our culiure. ®

Among the topics treated are the evidence supplied by mathemnadigs for
the Greek (and modern) doctrine that natural phenomena argadesigned
and orderly; the importance of mathematics in the creation and’defence
of the heliocentric theory of planctary motion; the applicatiga of mathe-
matics by the Renaissance painters to the developmens af perspective:
the guidance that mathematical method afforded Deseanés in his search
for truth; the inspiration derived from the universal ‘mathematical laws
of the Newtonian age for the Age of Reason andythe subsequent reorgani-
zation of philosophy, litcratLl%‘_.‘"ﬁﬁlxll’r?b'ﬁgﬁﬁﬁ‘y@f}ﬁdﬂ, political, and
cconomic thought; the importance of the statistical approach to knowledge
and the resulting clash between the statisiigal and deterministic views of
nature; the influence of non-Euclidean,g cOmetry on man's belief in truth;
and the theory of reiativity. N

Professor Kline {eels that mathemiaticians have failed to transmit the
larger significance of the grcat'm'z?f‘hematical creations, His own book is
a highly successful attemptSfo, Bridge the gap between the specialized
subject matter of mathematics and the broad pattcrns of our culture.

“Excellent chaplers onfe new geometries and their relation to the
Cinsteinian universe, ghdvthere are others on the meani ng of statistics and
probability. , . . Camprchensive without much prelimirary knowledge
of mathematic | {eghniques.™ The Nation, New York.

“Absorbipg'm the cxtreme. He also explains, with no less charm and
insight, thelinfluence of mathematics on such apparently unrclated arts
as musio’,“\poetry, and painting and its itheront possibilitics in helping
man ‘g bring order and beauty into the apparent chaos of the material
universe. His arguments are impeccable and should command the respect
and admiration of all who give them the serious study they merit.”

The Accowiant
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